최근 수정 시각 : 2024-06-27 16:25:31

수학교육학

수학교육에서 넘어옴

파일:나무위키+유도.png  
은(는) 여기로 연결됩니다.
이 학문을 배우는 대학의 학과에 대한 내용은 수학교육과 문서
번 문단을
부분을
, 이 학문을 기반으로 수학을 가르치는 사람에 대한 내용은 수학교사 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
참고하십시오.
1. 개요2. 수학교육학의 성격3. 수학교육의 필요성 및 목적4. 수학교육의 발달
4.1. 수학교육 근대화 운동4.2. 수학교육 현대화 운동4.3. 기본으로 돌아가기 운동과 그 이후
5. 수학교육 철학
5.1. 절대주의 수리철학 및 그 증명관5.2. 상대주의 수리철학 및 그 증명관
5.2.1. 준경험주의5.2.2. 구성주의
5.2.2.1. 조작적 구성주의5.2.2.2. 급진적 구성주의5.2.2.3. 사회적 구성주의5.2.2.4. 구성주의 수학 교수·학습 원리5.2.2.5. 사회적 구성주의의 증명관
6. 수학 문제해결 교육론
6.1. 문제해결의 단계6.2. 문제해결의 전략6.3. 문제 제기
7. 형태심리학8. 브루너의 수학 학습 심리학9. 스켐프의 수학 학습 심리학10. 딘즈(디너스)의 수학 학습 심리학11. 프로이덴탈의 수학화 교수·학습론12. 반 힐레의 수학 학습 수준 이론13. 교수학적 변환론14. 교사 지식
14.1. 슐만과 PCK14.2. 볼과 MKT
15. 수학과 평가16. 수학교육과 공학적 도구(테크놀로지)
16.1. 공학적 도구의 장점16.2. 컴퓨터를 이용한 수학 교수·학습 양식16.3. 교사의 테크놀로지 내용교수지식(TPACK)
17. 수학교재론18. 참고문헌

1. 개요

수학교육학은 수학의 교수·학습을 개선하는 데에 주요 목적을 둔 학문으로서, 순수수학 및 일반교육학을 비롯하여 수학인식론, 수리철학, 수학사, 심리학, 응용수학 등 관련 분야의 연구 결과를 종합해야 하는 응용학문이다.

2. 수학교육학의 성격

수학교육은 내용적, 설명적, 교육적 관점에서 이해될 수 있으며, 이를 통해 '수학을 왜 배워야 하는가'와 같은 질문에 실마리를 얻을 수 있다.
  • 내용적 이해: 수학 그 자체
  • 설명적 이해: 수학사, 수학기초론, 수리철학, 수리논리학, 수학사상사
  • 교육적 이해: 수학교육과정론, 수학교재론, 수학 교수·학습론, 수학교육평가, 수학 문제해결, 수학교육공학

3. 수학교육의 필요성 및 목적

수학교육은 정신도야성, 실용성, 문화적 가치 및 심미성 등에 그 목적을 두고 있다. 정신도야성은 학생들의 논리적 추론 등의 정신적 능력을 배양하는 데에 도움이 된다는 것을 의미하며, 수학의 엄밀성, 간결성, 논리성, 일반성 등에 근거하고 있다. 실용성은 넓은 의미로 해석해야 하는 것으로, 비단 학교 밖 주변에서의 실용성뿐 아니라, 상품을 구입하기 위해 자료를 조사하고, 가격을 비교하며, 구매 조건을 분석하여 최선의 선택을 하는 상황도 실용성의 범주에 포함할 수 있다. 또한 수학은 과학기술의 토대가 되며, 학생의 장래 직업 선택에 도움이 될 수 있도록 여러 방향의 가능성을 열어 두는 교육이 필요하다는 측면에서도 수학교육의 의미를 찾을 수 있다. 문화적 가치 및 심미성은 수학을 통해 아름다움을 느낄 수 있게 하기 위한다는 것을 의미한다. 주변의 사물이나 우주의 질서로부터, 또한 수학 그 자체에서 아름다움을 찾을 수 있다.(황혜정 외, 2019a: 42-49)

4. 수학교육의 발달

19세기 이전에는 소수의 특권층을 대상으로, 유클리드의 <원론>에 의한 수학교육이 실시되었다. 수학교육의 목적은 '두뇌의 도야'였으며, 이를 위해 엄밀한 논리적 전개를 교육하였다.(황혜정 외, 2019a: 53-54)

4.1. 수학교육 근대화 운동

19세기 말 영국에서는 산업혁명으로 인해 탄생된 노동자 계급에게 실용적인 수학교육을 시행할 필요성이 생겼다. 영국의 페리(Perry)는 우수한 수학 전문가를 만드는 수학교육에서 벗어나서, 전 국민의 신체·정신의 건전한 발달을 촉진시키는 수학교육이 수행되어야 한다고 주장하였다. 페리의 주장을 요약하면 다음과 같다.
  • 수학의 실용성과 유용성, 특히 자연과학과의 연결을 강조한다.
  • 유클리드 기하에서 탈피하여 실험 기하를 강조한다.
  • 모눈종이를 활용하고 입체 기하의 내용을 더 많이 지도한다.
  • 실험상의 측량을 중요시한다.
  • 대수 공식을 이용하는 지식과 능력을 기른다.

이러한 페리의 주장은 영국의 수학교육 개선에 크게 기여하였을뿐더러, 독일과 미국 등 다른 나라의 수학교육 근대화 운동의 기폭제가 되었다.(황혜정 외, 2019a: 53-54)

한편, 독일의 클라인(Klein)은 수학교육에서 가장 강조해야 할 것으로 함수 개념과 공간 관찰력의 함양을 주장하였으며, 학생들의 심리에 적절하도록 초보적인 기하학을 지도할 것을 주장하였다. 이러한 주장을 반영하여 클라인이 만든 교수 요목을 메란(Meran) 교육과정이라고 하며, 클라인의 주장을 요약하면 다음과 같다.(황혜정 외, 2019a: 55-56)
클라인의 주장을 요약하면 다음과 같다.
  • 수학의 추상적 측면과 실용적 측면 사이에서 균형을 유지한다.
  • 수학적 사고와 자연과학적 사고의 결합을 강조한다.
  • 미적분과 해석기하를 조기에 도입하되, 그 기초적 내용을 자연 현상과 관련지어 지도한다.
  • 실제적인 내용을 중요시하고 기능(skill) 위주의 내용은 경감한다.
  • 연역적 사고와 귀납적 사고가 균형을 이루도록 지도한다.
  • 자연 현상과 사회 현상을 수학적으로 관찰하는 능력을 발달시킨다.

또한 미국의 무어(Moore)는 학생의 관찰·실험·추리의 힘을 육성할 것을 강조하며, 다음과 같은 내용을 주장하였다.(황혜정 외, 2019a: 56)
  • 학교에서 지도되는 수학의 내용과 방법이 더욱 풍부해져야 한다.
  • 도형 그리기, 종이 접기, 모형 제작 등을 통해 직관 기하의 조작적 학습의 경험을 제공한다.
  • 기하 지도는 직관 기하, 비형식적 추론, 형식적 추론을 병행하여 지도한다.
  • 대수, 기하, 물리는 서로 긴밀한 관계가 있으므로 중등학교에서는 이 과목들을 하나의 과목으로 지도하는 것이 바람직하다.

이러한 수학교육 근대화 운동은 전반적으로 수학교육의 중요성을 크게 부각시켰으며, 학교 수학의 내용을 충실하게 하기 위해 체계적인 노력을 시작한 점, 수학의 실용적 측면을 강조한 점, 학생의 심리적 측면을 고려했다는 점 등에서 의의가 있다. 그러나 이 운동이 진행됨에 따라 논리적 원칙을 깊이 고려하지 않거나 논리를 불신하는 경향이 나타났다는 단점이 있었고, 현실적으로 교재를 마련하는 연구가 전개되지 못했다는 점에서 한계가 있다. 한편 이러한 수학교육 근대화 운동은 제1차 세계대전(1914~1918)로 인해 별다른 성과를 거두지 못한 채 수그러들었고, 제2차 세계대전(1939~1945)이 끝날 때까지 수학교육 개선의 노력은 큰 진전을 거두지 못했다.(황혜정 외, 2019a: 57)

4.2. 수학교육 현대화 운동

제2차 세계대전 후 과학기술의 진보로 인한 변화에 대응하기 위해, 수학교육 개혁의 필요성이 제기되었다. 특히 1957년 소련의 인공위성 스푸트니크 1호 발사 성공에 자극을 받은 미국과 유럽을 중심으로 진행되었으며, 이러한 맥락 속에서 전개된 운동을 '수학교육 현대화 운동' 또는 '새수학 운동'(The New Math Movement)이라 한다. 이 운동의 방향은 다음의 다섯 가지로 정리할 수 있다.(황혜정 외, 2019a: 58-60)
  • 내용 측면의 현대화 (주로 듀돈네에 의해 제안됨)
    • 현대수학[1]의 내용과 방법을 조기에 도입한다.
    • 대수적 구조를 강조한다.[2]
    • 논리적 엄밀성을 강조한다.
    • 교재를 정비하고 불필요한 내용[3]을 삭제한다.
  • 교수 방법상의 현대화

이러한 수학교육 현대화 운동은 미국과 유럽, 일본, 우리나라 등 광범위하게 확산되었고, 특히 우리나라에서는 제3차 교육과정이 이 운동의 영향을 받았다. 그러나 이러한 수학교육 현대화 운동은 출발 당시부터 교육학적 정당화가 부족했으며, 다음과 같은 비판을 받았다.(황혜정 외, 2019a: 61)
  • 학생들의 발달 수준에 맞지 않게 조급한 형식화와 추상화를 시도한다.
  • 장래에 수학자가 되기 위한 소수의 학생을 대상으로 한다.
  • 논리적 엄밀성과 연역적 추론을 지나치게 강조한다.
  • 다른 교과와의 관련성을 무시한다.
  • 아래로부터의 자발적인 운동이 아닌, 사회적·학문적 요청에 따른 위에서부터의 운동이었다.
  • 교사를 위한 적절한 교육과 지원이 없었다.
  • 현대화 교재와 전통적 교재의 조화를 도모하지 않았다.

4.3. 기본으로 돌아가기 운동과 그 이후

수학교육 현대화 운동에 의해 여러 개념이 학교수학에 새로 도입되었으나, 이에 대한 학생들의 이해가 저조할뿐더러 기본적인 계산 능력마저 저하되었다. 이에 기본으로 돌아가기 운동(The Back-to-Basics Movement)이 촉발되었으며, 이 운동에서는 기본 기능을 찾아 교재로 재구성하고, 행동적 목표와 지필 계산을 강조하였다. 기본 기능의 의미에 대해 논쟁이 전개된 결과, 좁은 의미의 계산 기능이 아닌, 문제해결을 포함한 고차원적 기능으로 확대해야 한다는 결론이 내려졌다.
1980년 미국 수학 교사 협의회(National Council of TEachers of Mathmatics, NCTM)는 '1980년대의 학교수학을 위한 제안'(An Agenda for Action)을 제시하였는데, 다음과 같은 내용을 권고하고 있다.(황혜정 외, 2019a: 63)
  • 문제해결의 강조
  • 계산 기능보다 폭넓은 기본 기능의 강조
  • 컴퓨터와 계산기를 이용한 수학교육
  • 효과와 효율을 동시에 고려
  • 다양하고 폭넓은 평가
  • 학생의 선택권이 다양한 교육과정 구성
  • 수학 교사의 전문성 제고
  • 수학교육을 위한 공공 지원의 확대

이후 1980년대와 1990년대를 거치며 문제해결, 구성주의, 수학 학습 수준 이론, 현실주의적 수학교육, 공학적 도구 활용, 평가 방법 개선 등이 강조되었다.(황혜정 외, 2019a: 64)

5. 수학교육 철학

수리철학은 수학의 본질에 대하여 성찰하고 설명하는 것을 과제로 삼는 반면, 수학교육 철학은 수학교수의 활동 또는 실행에 대한 목적이나 이유를 고민한다. 가령, 수리철학에서는 '수학의 본질은 무엇이며 무엇이 수학적 진리를 특징짓는가?' 등을 살펴보며, 수학교육 철학에서는 '수학의 교수와 학습의 목적이 무엇이며, 어떻게 하면 어려운 수학을 학생들에게 잘 가르칠 수 있을까?' 등을 다룬다. 수학교육 철학의 고민들은 수리철학에 대한 고민 없이는 대답하기 어려우며, 두 철학은 서로 밀접한 관계에 있다.(강옥기 외, 2012: 21) 대표적인 수리철학 몇 가지를 살펴보면 아래와 같다.
  • 절대주의 수리철학
    • 플라톤주의
    • 논리주의
    • 직관주의
    • 형식주의
  • 상대주의 수리철학
    • 준경험주의
    • 구성주의

5.1. 절대주의 수리철학 및 그 증명관

절대주의 수리철학에서는 수학적 지식은 확실하고 절대적인 진리로서의 수학을 인정하고, 수학적 지식은 경험이 아닌 이성에만 의존하므로 가장 확실하다고 본다. 절대주의 수리철학자들은 공리, 정의, 연역적 증명에 의하여 구성된 수학적 지식을 참이라고 하였다. 특히 유클리드의 <원론>은 기원전부터 19세기 말까지 2500여 년 동안 진리의 전형으로 생각되어 왔다. (강옥기 외, 2012: 24)

(1) 플라톤주의
플라톤주의는 이성을 인간의 타고난 특성으로 간주하였고, 진리를 관찰하지 않더라도 이성을 통해 선험적으로 지각할 수 있다고 생각하였다. 가령, 종이에 직선이나 원을 아무리 정확하게 그리더라도 수학적 정의에 완벽하게 부합할 수는 없다. 그러나 우리가 도형에 대해 이야기할 때에는 종이에 그려진 불완전한 대상이 아닌 완전한 대상을 다룬다. 이와 같이 수학적 지식은 완전한 대상에 대한 지식이므로, 다른 대상에 비해 더 확실한 지식으로 여겨진다. 플라톤은 수학(산술과 기하)을 철학자 군주가 될 사람들이 배워야 할 필수 과목이라고 주장하며, 이는 수학이 비가시적 대상을 논리적으로 탐구하는 학문이기 때문이라고 하나. 플라톤의 수학적 사고는 눈에 보이는 것을 그대로 받아들이는 것이 아니라, 논리를 이용하여 의견의 타당성을 검증하는 것이다. 눈에 보이지 않는 수학적 대상의 정의로부터 논리적으로 사고할 때에 비로소 수학적으로 사고했다고 말할 수 있다. 한편 19세기까지 플라톤주의와 유클리드 기하의 입지는 확고하였으나, 이후 비유클리드 기하학, 모든 점에서 연속이지만 어떠한 점에서도 미분가능하지 않은 바이어슈트라스 함수, 러셀의 역설 등이 발견되면서 수학적 완전성이 흔들리게 되었다.(강옥기 외, 2012: 24-26) 플라톤주의는 증명을 수학 내용의 절대적 진리를 정당화하는 유일한 방법이라고 보았다. 증명을 통해 유도된 새로운 정리만이 진리로 인정받았으며, 증명은 인간을 참된 진리의 상태에 도달하게 하는 합리적인 과정이며, 수학적 명제가 참임을 보증하는 핵심적인 방법이었다.(김남희 외, 2017: 218-219)

(2) 논리주의
논리주의는 순수수학을 논리의 일부로 보는 학파로, 논리학의 확실성을 통해 수학은 확실한 대상이 된다. 만일 모든 수학이 논리적인 용어로 표현되고 논리적 원리만으로 증명될 수 있다면 수학의 확실성은 논리의 확실성으로 환원될 수 있다는 것이다. 그러나 모든 수학을 논리적인 용어로 표현하고 이를 논리적 원리만으로 증명하는 것은 불가능했는데, 무한 공리나 선택공리 등 비논리적 공리가 존재했기 때문이다. 또한 불완전성 정리는 연역적 증명이 모든 수학적 진리를 입증하는 데에 불충분하다는 것을 보여 주었는데, 이는 수학적 공리를 논리의 공리로 환원하더라도 모든 수학적 진리를 유도하는 데에는 충분하지 않음을 밝힌 것이었다. 이에 수학적 지식의 확실성을 논리의 확실성으로 환원하려는 논리주의 프로그램은 원칙적으로 실패하였다.(강옥기 외, 2012: 27-29)
논리주의에서 증명은 수학 지식을 논리적으로 정당화하기 위한 장치라고 볼 수 있다.(김남희 외, 2017: 219)

(3) 직관주의
직관주의는 수학이 직관을 바탕으로 인간의 정신 활동으로 구성해 가는 과정이라고 주장한다. 모든 수학이 자연수(직관적으로 자명하다고 인정되는 출발점) 위서 구성적으로 근거하여, 수학적 대상은 유한 번의 단계 내에 구성되어야 한다고 생각하였다. 직관주의자들은 인간이 수학적으로 구성하지 않은 것은 진리로 인정하지 않았기에, 고전 논리에서 사용되는 대부분의 법칙을 수학에 적용해서는 안 된다고 보았다. 가령 고전 논리에서 존재성의 증명에 흔히 사용되는 배중률과 삼분법을 무한집합에 적용하는 것은 직관적으로 자명하지 않다고 보았고, 구성 가능한 대상만을 존재성의 증명으로 인정하였다. 그렇기에 수학의 내용을 지나치게 제한하는 오류를 범하였고, 해석학의 많은 이론을 포기해야 하였다. 또한 직관주의가 근거로 하는 '직관'이 어떻게 객관성을 가지게 되는지를 적절히 설명하지 못하였다는 한계가 있다. (강옥기 외, 2012: 29-30)
직관주의에서는 증명 역시 고전적인 증명 대부분을 인정하지 않으며, 구성적인 증명만을 인정하였다. (김남희 외, 2017: 219)

(4) 형식주의
형식주의에서는 수학을 형식 체계로 보며, 명제는 형식적인 추론 규칙에 따라 다루어지는, 의미 없는 기호의 유한 번의 연결로 간주된다. 기호의 의미가 아닌 기호를 다루는 규칙 체계의 건전성 여부만 남게 되며, 기호(점·선·면 등)를 다른 기호(책상·의자·맥주컵 등)로 바꾸어도 무방하다. 그러나 불완전성 정리로 인해 모든 수학의 진리가 형식 체계에서 정리로 표현될 수 없으며, 또한 체계 자체가 안전성을 보장받을 수 없음이 밝혀졌다. (강옥기 외, 2012: 30-31)
형식주의에서 증명은 의미를 고려하지 않는 일련의 기호로서, 엄밀한 연역적 증명은 무모순성과 완전성을 보장하는 수단이었다.(김남희 외, 2012: 220)

5.2. 상대주의 수리철학 및 그 증명관

수학의 확실성을 찾고자 하는 절대주의 수리철학의 실패와 한계에 의해, 수학적 지식의 오류 가능성을 인정하는 사조가 등장한다. 이러한 철학을 상대주의 또는 오류주의라고 하며, 이에 따르면 수학적 지식에는 절대적인 기초가 존재하지 않으며 존재한다고 하더라도 어떤 것이 기초인지 판단할 수 없다.(강옥기 외, 2012: 31-32)

5.2.1. 준경험주의

라카토스(Lakatos)에 의하면 수학은 고정된 기초 위에 세워진 유한한 구조가 아니며, 항상 성장하고 변화하며 수정되는 지식체이다. 수학적 지식은 오류 가능하므로 끊임없이 개선되며, 수학적 지식은 완전한 확실성을 밝힐 수 없고 단지 추측하고 추측을 검사·반박하며 새로이 개선된 추측을 만들어 발전시켜 나가는 것이라고 주장하였다. 라카토스는 다음과 같은 수학적 지식의 성장 과정을 제시하였다. 수학은 자연과학과 달리 경험과 실험을 통해 연구되는 것이 아니지만, 수학적 지식의 성장 과정이 추측, 반례, 추측의 수정이라는 점에서 자연과학의 발전 방식과 유사하며, 이러한 측면에서 수학을 준경험과학이라고 부를 수 있다.(강옥기 외, 2012: 33-34)

1단계: 수학적 추측을 제기하는 단계
2단계: 추측을 부분 추측으로 분해하는 단계
3단계: 반례가 등장하고 추측과 증명을 반박하는 단계
4단계: 증명을 검토하여 증명과 추측을 개선하는 단계

반례에는 원래의 추측을 반박하는 전면적 반례와 부분 추측을 반박하는 국소적 반례가 있다. 전면적 반례에 의해 추측이 비판되었을 때에는 다음과 같은 네 가지 대응 방식이 있다.
첫째, 반례를 받아들이고 원래의 추측이 틀렸음을 인정하는 것이다.(황혜정 외, 2019a: 89-91)
둘째, 추측에 포함된 개념들을 정교하게 다시 정의함으로써 반례를 배제하는 방식으로, 괴물배제법이라 한다. 이 방법의 경우 원래의 추측은 유지된다.
셋째, 추측에 조건 절을 첨가하여 안전한 영역으로 철수하는 방식으로, 예외배제법이라 한다. 이 방법의 경우 용어의 정의가 변화되지는 않는다.
마지막으로, 반례가 출현하는 원인이 된 부분 추측을 찾아서 이것을 고쳐서 원래의 추측에 합체시키는 방식으로, 보조정리합체법이라 한다.

준경험주의의 입장에서 어떤 정리를 증명한 것으로 모든 것이 끝나는 것이 아니라, 증명 이후에도 증명을 분석함으로써 추측과 증명을 개선하는 과정이 진행된다. 라카토스에게 증명은 정리를 정당화하는 수단이 아니라, 증명을 분석함으로써 주장된 정리를 비판하여 그 정리를 개선하기 위한 발견의 도구이다.(김남희 외, 2017: 221-223)

5.2.2. 구성주의

구성주의는 지식이 인식 주체에 의해 능동적으로 구성되는 것이라고 하며, 인식 주체의 밖에 독립적으로 존재하는 세계를 발견하는 것이 아니라고 주장한다. 수학이 처음부터 만들어져 있던 것이 아니라고 보며, 학습자가 스스로 능동적인 구성 활동을 통해 자신에게 의미 있는 지식을 구성해 나간다고 한다.(강옥기 외, 2012: 37-38) 구성주의에는 조작적 구성주의, 급진적 구성주의, 사회적 구성주의 등이 있다.
5.2.2.1. 조작적 구성주의
피아제(Piaget)는 지식이 개인과 환경 간의 상호작용에 의해 끊임없이 재구성된다고 보았다. 피아제는 수학적 지식 및 사고의 본질을 조작(Operation)으로 보고, 그 발생 과정을 분석하였다. 피아제 이전에는 수학적 개념이 사물로부터 공통 성질을 추상화해서 얻어지는 견해가 일반적이었으나, 피아제는 사물의 속성이 아니라 인간의 행동에서 추상화된 것이라고 보았다. 가령, 수의 개념은 '사물'이 아니라 '세기'라는 행동에 있다. 이와 같은 행동과 조작의 일반적 조정으로부터, 반영적 추상화를 통해 형성된 조작적 도식(schème)이 곧 논리·수학적 지식이 된다. 반영적 추상화란 '사물로부터의 추상화'(경험적 추상화)가 아닌 '행동으로부터의 추상화'를 의미하며, 대부분의 수학적 개념이나 지식을 이해하기 위해서는 경험적 추상화가 아닌 반영적 추상화를 거쳐야 한다고 주장한다. 조작적 구성주의에 따르면 수학적 지식은 인간의 조작 활동에 그 근원을 두고 있으며, 수학 수업에서는 지식의 근원이 되는 조작을 강조하고, 자신의 조작 활동을 반성하는 활동을 강조할 필요가 있다. (강옥기 외, 2012: 362-364; 황혜정 외, 2019a: 104-105)
5.2.2.2. 급진적 구성주의
글래저펠트(von Glaserfield)는 세 가지 급진적 구성주의의 원리를 제시하며, 학습자가 삶의 맥락 속에서 자신의 삶을 구성하며 그 결과가 지식이 된다고 주장한다. 그 원리는 다음과 같다.
  • 지식의 자주적 구성의 원리: 지식은 감각이나 의사소통에 의해 수동적으로 받아들여지는 것이 아니라, 인식 주체에 의해 능동적으로 구성된다.
  • 지식의 생장 지향성의 원리: 인식의 기능은 적응적이며, 생물학적 용어로 적합성 또는 생장성을 지향하는 경향을 지닌다.
  • 지식의 비객관성의 원리: 인식은 주체가 경험 세계를 조직하는 데에 도움을 주는 것이지, 결코 객관적인 존재론적 실재를 발견하도록 돕는 것이 아니다.

이 중 지식의 비객관성의 원리가 급진적 구성주의를 급진적인 것으로 특징짓는다. 이러한 급진적 구성주의는 피아제의 조작적 구성주의와 다음과 같은 차이가 있다.(강옥기 외, 2012: 365-367)
구분 조작적 구성주의 급진적 구성주의
학습의 의존성 학습은 본질적으로 내용과 상황에 의존하지 않는다. 의존한다.
학습의 보편성 학습은 보편적 현상으로, 학생의 성숙에 따라 예정된 방향으로 발달한다. 학습은 어떤 예정된 방향으로 발달하는 것이 아니고, 연령과도 관계가 없다.
발달 단계 일반적인 논리적 능력의 발달을 중심으로 생각한다. 현상에 대한 개인의 개념 발달을 중심으로 생각한다.
지식의 구성 인식 주체와 주위 대상 간 상호 작용에 의한 지식의 주관적 구성을 강조한다. 사회적 과정 또한 중시한다.
객관성의 배제 객관성을 완전히 배제하지는 않는다. 완전히 배제한다.
급진적 구성주의에서는 다음과 같은 내용을 주장한다. 첫째, 지식은 언어를 통해 전달될 수 없으며, 개인의 경험을 통한 추상화 과정에 의해 구성된다. 둘째, 개인은 특정한 자신의 경험 세계에 잘 적응하기 위한 지식을 구성한다. 셋째, 지식은 인간이 구성한 것이므로, 객관적 실재의 존재 여부 또는 그것과 지식의 관련성은 무의미하다. 넷째, 의사소통은 주과적 경험 세계의 상대적 합의 영역이 존재할 때 가능하며, 객관적인 실재의 본질로부터 도출되는 것이 아니다. 다섯째, 수학적 지식의 확실성은 적합성 및 적응성으로 대체되어야 한다. 여섯째, 교사는 안내자로서 학생들이 각기 다른 방식으로 지식을 구성하는 것을 격려해야 한다. 이러한 급진적 구성주의는 지식을 정확히 전수하는 것이 아닌 학생 스스로 사고를 전개하는 것을 강조한다.(황혜정 외, 2019a: 106-108)
5.2.2.3. 사회적 구성주의
비고츠키(Vygotsky)는 인간 개별체보다 인간의 상호작용 자체가 지식을 만드는 출발점이라고 주장하였다. 인간에게서 지식은 인간 개체에 의해 형성된 것이라기보다는 타인과 더불어 발생하는 것이라고 한다. 사회적 구성주의에서는 지식의 자주적 구성의 원리와 지식의 생장 지향성의 원리를 수용하나, 지식의 비객관성의 원리는 지식의 사회적 구성으로 수정하였다. 코브(Cobb)는 '합의성'을 강조하였고, 어니스트(Ernest)는 급진적 구성주의와 달리 '언어의 사회적 공유성'을 주창하며 '사회성'을 강조한다. 사회적 구성주의에서는 객관성의 의미를 수정하여, '사회 공동체가 옳다고 인정하는 것' 또는 '역사와 문화를 통해 인정된 것'을 객관성의 의미로 삼는다. 이러한 객관성(합의 가능성)의 근거는 자연 언어의 공유성을 든다. 이처럼 사회적 구성주의에서는 지식의 형성 과정에서 사회와 언어의 역할을 강조하며, 지식의 구성은 다음 두 과정을 거친다고 주장한다. 과정 1에서는 공적인 비판과 재구성이, 과정 2에서는 학습이 이루어진다.(강옥기 외, 2012: 368; 황혜정 외, 2019a: 109-111)

과정 1. 창조의 과정: 개인의 주관적인 수학적 지식이 사회의 객관적인 수학적 지식이 되는 과정
과정 2. 학습·재구성·수학적 문화화의 과정: 사회의 객관적인 수학적 지식이 개인의 주관적인 수학적 지식이 되는 과정
5.2.2.4. 구성주의 수학 교수·학습 원리
박영배(1996, 황혜정 외, 2019a에서 재인용)는 수학교육학적 구성주의의 교수·학습 원리로 다음의 네 가지를 제시하였다. 첫째, 학생 중심적 개별화의 원리는 수학 학습은 학생 개인의 지적 자율성에 바탕을 두어야 한다는 원리이다. 학생 개개인마다 능력에 따른 개인차가 존재하므로, 교수·학습에서는 개별화를 고려하여야 하며, 개별적 교수·학습을 통해 각 개인의 수학적 능력을 극대화하는 것을 지향해야 한다. 둘째, 발문 중심적 상호작용의 원리는 학생이 주체가 되어 지식을 구성할 수 있도록 교사가 발문을 중심으로 학생을 안내하거나 도와야 한다는 원리이다. 학생들은 발문에 답하며 자신들의 생각을 정리하고, 다른 학생들과 자신의 생각을 비교하며 자기 생각을 수정하고, 새로운 방향을 찾아 갈 수 있다. 교수·학습 환경에서는 다양한 발문이 필요한데, 다음과 같은 것들이 있다.
  • 사실 확인적 발문
  • 논리 추구적 발문
    • 폐논리적 계열 회상형 발문
    • 폐논리적 비회상형 발문
    • 발전적 논리형 발문
    • 관찰형 발문
  • 자유 발전적 발문

셋째, 의미 지향적 활동의 원리는 학교 수학이 학생들에게 의미 있는 것이 되어야 한다는 원리이다. 깨달음 없이 주어진 지식을 수용하는 것이 아니라, 학생들이 활동 속에 구성한 의미에 충실한 지식의 구성이 이루어져야 한다는 것이다. 교사는 학교 수학이 의미 있는 것임을 학생이 체감할 수 있도록 노력해야 한다. 마지막으로, 반영적 추상화의 원리는 학생 자신에 의해 내면적으로 이루어지는 반성적 활동을 중시해야 한다는 원리이다. 조작은 반성과 결부되어야 하며, 학생들이 자신의 행동을 사고의 대상으로 삼도록 하여야 한다.(황혜정 외, 2019a: 114-117; 강옥기 외, 2012: 399)
5.2.2.5. 사회적 구성주의의 증명관
사회적 구성주의의 주장에 따르면, 지식은 객관적 지식과 주관적 지식 사이의 순환이 이루어지며, 이들은 서로 창조와 재창조에 기여한다. 사회적 구성주의에서는 수학자 개인의 증명이 객관적인 수학적 지식으로 인정되는 과정에 주목하며, 증명은 자기 자신과 다른 사람들을 확신시키기 위한 설명이자, 수학자들 사이 의사소통의 수단이다. 학교에서는 증명을 '엄밀함'이나 '정직성'의 추상적 기준을 만족시키기 위해 의례적으로 행할 것이 아니라, 학생들의 확신을 증신시키는 설명이 되어야 한다.(김남희 외, 2017: 224-225)

6. 수학 문제해결 교육론

문제해결은 1980년대 이후 수학교육의 구심점이 되어 왔다. 여기서의 문제란 단순히 계산 연습의 대상이 아니라, 해결 방법을 쉽게 구하기 어려우면서 해결을 위해 다단계에 걸친 사고가 요구되는 것을 말한다. 폴리아(Polya)는 수학 교사가 학생들에게 적절한 문제를 제공함으로써 호기심을 불러일으키고, 자극적인 질문을 통해 학생이 문제를 해결할 수 있도록 도우며, 학생이 자신의 사고에 대한 의미와 방법을 알 수 있도록 해야 한다고 주장했다.(황혜정 외, 2019a,: 134-135; 강옥기 외, 2012: 313)

숀펠드(Schoenfeld)는 문제해결의 성공을 위한 요인으로 자원(resources), 발견술(heuristics), 통제(control), 신념 체계(belief systems)를 강조하였다. 각각에 대한 설명과 예시는 아래와 같다.(황혜정 외, 2019a: 138; 강옥기 외, 2012, 314-315)
  • 자원: 주어진 문제를 해결하기 위해 사용할 수 있는 도구와 기법
    • 지식, 직관, 알고리즘, 법칙 등
  • 발견술: 비표준적인 문제에서 진전을 이루기 위한 전략과 기술
    • 유추, 일반화, 특수화, 보조 문제 이용, 거꾸로 풀기 등
  • 통제: 자원과 전략의 선별과 채택에 관한 전체적인 결정
    • 계획, 모니터링과 평가, 의사결정, 의식적인 메타인지적 행위 등
  • 신념 체계: 학습자가 수학에 대해 가지고 있는 가치관이나 선입견
    • 자신에 대한 신념, 환경에 대한 신념, 주제에 대한 신념, 수학에 대한 신념

6.1. 문제해결의 단계

폴리아는 문제해결의 전략으로 문제 이해 → 계획 수립 → 계획 실행 → 반성이라는 네 가지 단계를 제시하였다. 각 단계에서 교사는 다음과 같은 발문과 권고를 제공할 수 있다.(강옥기 외, 2012: 319-323; 황혜정 외, 2019a: 150-151)
  • 문제 이해 단계
    • 미지인 것은 무엇인가?
    • 자료는 무엇인가?
    • 조건은 무엇인가?
    • 조건은 만족될 수 있는가?
    • 미지의 것을 결정하기에 조건이 충분한가, 불충분한가, 과다한가?
    • 그림을 그려 보라.
    • 적절한 기호를 붙이라.
    • 조건을 여러 부분으로 분해하라.
  • 계획 수립 단계
    • 전에 같거나 유사한 문제를 본 적이 있는가?
    • 관련된 문제를 알고 있는가?
    • 유용한 정리를 알고 있는가?
    • 미지인 것을 살펴보고, 미지인 것이 같거나 유사하면서 친숙한 문제를 생각해 보라.
    • 전에 푼 문제의 방법이나 결과를 활용할 수 있는가?
    • 문제를 다르게 표현할 수 있는가?
    • 정의로 되돌아 가라.
    • 보다 쉬운/일반적인/특수한 문제는?
    • 문제의 일부분을 풀 수 있는가?
    • 조건의 일부만 남기고 다른 것은 버려 보라. 그러면 미지인 것은 어느 정도까지 정해지는가?
    • 필요한 다른 자료는 무엇이 있는가?
    • 자료나 조건을 모두 사용했는가?
    • 문제에 포함된 핵심 개념을 모두 고려했는가?
  • 계획 실행 단계
    • 풀이의 각 단계를 실행하고 점검하라.
    • 각 단계가 옳은지 명확하게 알 수 있는가?
    • 그것이 옳다는 것을 설명할 수 있는가?
  • 반성 단계
    • 결과 및 풀이 과정을 점검할 수 있는가?
    • 결과를 다른 방법으로 이끌어 낼 수 있는가?
    • 결과나 방법을 다른 문제에 활용할 수 있는가?

한편 문제해결 과정에서는 메타인지적 사고가 필수적인데, 메타인지는 자신의 사고 과정에 대한 인지로서, 자신의 사고 과정을 모니터하고, 조절하고, 평가하고, 방향을 설정하는 정신적 활동을 의미한다. 메타인지는 문제해결의 4단계에 모두 영향을 미치지만, 반성 단계와 가장 밀접한 관련이 있다.(황혜정 외, 2019a: 151-152; 강옥기 외, 2012: 323)

6.2. 문제해결의 전략

문제해결을 위해 다음과 같은 문제해결 전략을 사용할 수 있다.(황혜정 외, 2019a: 176-186)
  • 예상과 확인
  • 표 만들기
  • 그림 그리기
  • 식 세우기
  • 규칙성 찾기
  • 거꾸로 풀기
  • 단순화하기
  • 특수화하기
  • 유추하기 (유비 추론)
  • 간접 증명법 (귀류법, 분할법, 동일법)

6.3. 문제 제기

수학적 문제해결 교육에서 주어진 문제를 해결하는 것을 넘어 새로운 문제를 제기하는 과정을 다룰 수 있다. 이와 같은 활동을 문제 제기 혹은 문제 설정이라고 한다. 이는 다음과 같은 중요성이 있다. 먼저, 문제를 해결하는 과정에서 새로운 문제를 제기함으로써 원래의 문제를 재해석하고, 원래의 문제를 해결할 수 있는 단서를 얻으며, 문제의 의미를 더욱 명확하게 이해하거나 새로운 생각을 할 수 있다. 다음으로, 창조적인 사고를 유도하고, 학습 동기를 유발하며 바람직한 과학적 태도를 가지게 할 수 있다.

이러한 문제 제기는 수용도전으로 나눌 수 있다. 수용은 주어진 것을 그대로 유지하면서 탐구하여 문제를 제기하는 것이고, 도전은 주어진 것을 뒤집거나 변형해 보는 단계이다. Brown&Walter(1990, 황혜정 외, 2019a에서 재인용)는 수용 단계에서 사용할 수 있는 5가지 전략과 도전 단계에서 사용할 수 있는 What-if-not 전략을 소개하였다. (황혜정 외, 2019a: 158-160)
  • 수용 단계의 5가지 전략
    1. 현상을 탐구: 관찰, 질문, 추측
    2. 내적 탐구 대 외적 탐구: 전체적으로 다른 현상과의 관련성을 보는 것(외적 탐구) 및 대상의 각 부분의 관련성을 보는 것(내적 탐구)
    3. 정확한 탐구 대 근사적 탐구: 문제 제기 시 정확한 정답을 구할 수 있는 것뿐 아니라 근사적 답을 구하여 부족한 부분이 무엇인지를 알아보는 것
    4. 역사적 탐구: 역사적 사고에 따라 의미 있는 문제를 제기하는 것
    5. 사용하기 간편한 질문 목록: 문제 생성을 위한 출발점이 되는 질문 목록
  • 도전 단계의 What if not 전략의 절차
    1. 출발점 선택하기[4]
    2. 속성 열거하기[5]
    3. What if not 수행하기(속성 부정하기)[6]
    4. 문제 제기하기[7]
    5. 설정한 문제 분석하기[8]

7. 형태심리학

실험심리학이 도입되면서 사고 과정을 '관념들의 연결'로 보는 연합주의가 널리 주장되었다. 그러나 형태(게슈탈트)심리학에서는 자극과 반응을 기본 요소로 하는 행동주의적 방법에 반대하며, 전체는 부분의 합과 다르다고 주장하였다. 형태심리학은 수학 교수·학습에 관심을 가지며, 기계적 학습과 유의미 학습으로부터 기대할 수 있는 관계를 설명하려고 하였다. 대표적인 형태심리학자로는 베르트하이머(Wertheimer), 카토나(Katona), 쾰러(Köhler) 등이 있다. 이들은 모두 관계적 결정 원리를 강조하였는데, 이는 전체가 단순한 부분(요소)의 결합이 아니며 내적 관련성을 보유하며, 부분은 그 전체에 의해 규정된다는 원리이다.(황혜정 외, 2019a: 189-190)

(1) 베르트하이머와 생산적 사고
베르트하이머는 생산적 사고를 설명하였다. 이는 구조적 이해를 기초로 하는 사고를 의미하며, 즉 기계적 암기가 아닌 통찰에 기초한 이해가 중요함을 의미한다. 베르트하이머는 평행사변형의 넓이를 구하는 방식을 예시로 들며, 학생들이 평행사변형과 직사각형 사이의 기능적 동질성을 이해하였다면 학생들이 실수 없이 평행사변형의 넓이를 구할 수 있을 것이라고 주장하였다. 즉 동질성이야말로 평행사변형의 넓이를 구하는 문제의 실체적 기초 구조라는 것이다. 생산적 사고를 강조하는 형태심리학자들은 문제의 전체적인 구조를 중시하며, 과거 경험으로부터 구조적인 내적 관련성을 보는 통찰력을 얻는 것이 중요하다고 말한다.(황혜정 외, 2019a: 191-193)

(2) 카토나와 의미 있는 학습
카토나는 1491625364964(1조 4916억 2536만 4964)라는 수를 외울 때, 이 수를 그저 외우려고 하기보다, 이 수의 규칙성을 발견하고 통찰을 얻을 때 학습이 이루어질 수 있다고 하였다.(황혜정 외, 2019a: 194-195)
카토나는 문제해결과 같은 유의미 학습은 명확한 표상이나 수학적 구조를 발견하는 것에 의존한다고 하였다. 따라서 학습 내용과 문제해결의 기초 원리들을 이해하였다면, 해결책은 재구성되고 확정되며 기억될 것이다. 형태심리학의 관점에서 문제해결의 통찰력은, 문제를 전체로서 이해할 때에 나오고 전체에 대한 부분의 관계에서 나온다. 이러한 형태심리학의 영향을 받은 폴리아는 문제해결을 위한 힌트(문제의 목표를 다시 고려하고, 전에 푼 유사 문제에 대한 기억을 더듬으며, 문제의 자료나 조건을 분석할 때 도움이 되는 힌트)를 발전시켰고, 이러한 힌트는 통찰력을 출현시키는 데에 도움이 될 것이다.

(3) 연합주의 심리학과의 비교
연합주의 심리학은 손다이크(Thorndike), 스키너(Skinner), 파블로프(Pavlov) 등이 중심이 되었으며, 최초의 심리학이라 볼 수 있다. 이 중 손다이크와 스키너는 심리학의 연구 결과를 수학 학습에 적용하는 연구를 수행하였다. 손다이크는 학습은 외부 자극과 그에 대한 유기체의 반응으로 이루어진다는 입장을 취한다. 이러한 자극과 반응의 관계를 연결(connection) 또는 결합(bond)라고 부른다. 자극과 반응 사이 결합이 형성되고 만족스러운 결과가 수반되면 결합의 강도는 강화되고, 불만족스러운 결과가 수반되면 결합의 강도가 약화된다는 '효과의 법칙'을 주장한다. 손다이크는 산술을 지도할 때 연역적 설명은 학생들이 5학년 정도가 되어야 비로소 이해할 수 있다고 주장한다. 그러므로 학생들에게는 연역적 설명과 상관없이 정확하게 계산하는 법을 지도해야 하고, 연역적 설명은 부수적인 것이 되어야 한다.
이러한 연합주의자들은 과거 경험으로부터 해결 습관들의 응용에 관심이 있는데, 형태심리학자들은 새로운 상황에 대한 창의적 해결에 관심이 있다. 연합주의 심리학자들과 형태심리학자들이 취급하는 문제의 종류가 다르다는 것을 의미하며, 베르트하이머는 문제에 대한 구조적 통찰을 통해 창의적으로 해결할 수 있는 아이디어를 제공하는 것으로 해석할 수 있다. 창의적 해결 과정을 명확히 밝히는 것은 매우 어렵지만, 연합주의 심리학에서 설명하기 어려운 점을 지적하였다는 점에서 의미가 있다.(황혜정 외, 2019a: 199-203)

8. 브루너의 수학 학습 심리학

(1) 지식의 구조
브루너는 각 학문의 기저를 이루고 있는 핵심적인 개념과 원리를 지식의 구조라고 부르며, 이를 지도하면 다음과 같은 이점이 있다고 주장한다.
  • 기본 사항을 이해하면 내용을 쉽게 파악할 수 있다.
  • 구조화된 패턴 내에 있을 때 세세한 사항이 오래 기억된다.
  • 기본적인 원리나 아이디어를 이해하면 적절한 훈련의 전이가 가능하다.
  • 고등 지식과 초보적 지식 사이의 간격을 좁힐 수 있다.

특히 마지막 사항이 가장 중요한데, 브루너는 학자들이 하는 일과 초등학교 3학년 학생이 하는 일이 근본적으로 동일하다고 주장하며, 지식의 구조를가르치는 것은 학생들로 하여금 학자들과 본질상 동일한 일을 하도록 하는 것을 의미한다.(황혜정 외, 2019a: 221-222)

반면 지식의 구조에 중점을 두지 않고 학습을 진행한다면, 다음과 같은 단점이 있다.(강옥기 외, 2012: 55)
  • 각 내용 간의 관련성을 맺지 못해 새로운 학습에 대한 적응이 힘들다.
  • 일반적인 원리를 학습하지 못하면 희열을 느끼기 힘들고, 수학을 공부하는 가치를 깨닫기 힘들다.
  • 구조가 강조되지 않을 경우 수학 내용을 기억하기 어렵다.

브루너는 다음과 같은 가설을 제시함으로써, 교사가 학생들의 수준에 맞게 올바른 형식으로 표현하기만 하면 초등학교 3학년이나 전문 학자나 동일한 내용을 다룰 수 있다고 주장하였다.(김남희, 2021: 51)
어떤 교과의 내용이든 지적으로 올바른 형태로 표현하면 어떤 발달 단계에 있는 어떤 아동에게도 교과의 내용을 효과적으로 가르칠 수 있다.

(2) 발견 학습
브루너의 입장에서 수학이란, '수학 책에 나오는 내용의 모음'이 아니라, '수학적 내용을 처리할 수 있는 방법'이다. 그러므로 학생들은 주어진 지식을 수동적으로 받아들이는 것이 아니라, 수학적 내용이 던져진 교실에 적극적·능동적으로 참여하여야 한다. 스스로 탐구하고 발견하는 발견 학습을 강조하며, 이는 교사가 학생들에게 탐구할 내용을 제시하면 학생들이 자발적으로 그 내용에 대한 해답을 발견토록 하는 것이다.(강옥기 외, 2012: 56)
브루너는 지식의 구조에 대한 발견을 통하여 궁극적으로 수학적인 안목의 형성을 기대하였다. 일상생활 속에서 현상을 수학적으로 바라보고 해석하는 안목을 가지는 것을 교육의 목표로 본 것이다.(황혜정 외, 2019a: 224)

(3) EIS 이론
브루너는 인간의 인지 능력은 활동적 표현(Enactive Representation), 영상적 표현(Iconic Representation), 상징적 표현(Symbolic Representation)의 세 단계를 거쳐 발달한다고 주장한다. 이를 각 표현의 머리글자를 따서 EIS 이론이라고 한다. (김남희, 2021: 51-52)
  • 활동적 표현: 어떤 사건이나 적절한 반응 혹은 행동으로 표현하는 양식[9]
  • 영상적 표현: 어떤 개념을 완전히 정의하지는 않지만 그것을 나타내는 대략적인 이미지나 그림으로 표현하는 양식[10]
  • 상징적 표현: 활동 또는 이미지로 나타난 것을 문자나 기호로 표현하는 양식[11]

(4) 나선형 교육과정
상술된 브루너의 가설이 옳다고 하면, 학교의 수학 교육과정은 수학에서 가장 중요한 내용, 일반적인 원리, 고차원적 개념 등을 중심으로 구성되어야 한다. 이러한 내용을 학생들의 발달 수준에 부합하게끔 올바른 방식으로 표현함으로써 가능한 한 일찍 가르쳐야 한다는 것이다. 이처럼 저학년에서 가르치고 나면, 이들이 고학년이 되었을 때 성숙한 발달 수준에 부합하는 새 표현 방법을 적용하여 다시 가르칠 수 있다. 이때 가르치는 내용에서 본질적인 구조의 차이는 없고, 단지 표상 방법의 차이가 있을 뿐이다. 이처럼 저학년에서 가르친 내용을 고학년에서도 반복적으로 가르치고, 학년이 올라갈수록 원리나 개념을 점차 확장하여 지적 성숙을 이룰 수 있도록 구성한 교육과정을 나선형 교육과정이라 한다.(강옥기 외, 2012: 63)

9. 스켐프의 수학 학습 심리학

스켐프(Skemp)는 연합주의 심리학의 산물(반복 연습과 암기)에 대한 대안으로서, 관계적 이해를 통한 지적 학습 이론을 주장한다. 기본 이론과 용어는 다음과 같다.(황혜정 외, 2019a: 237-239; 김남희, 2021: 77)
  • 추상화: 일상생활에서 경험 사이의 유사성을 인식하는 활동
  • 일차 개념과 이차 개념
    • 일차 개념: 감각 기관이나 외부 세계의 동적 경험에서 얻어지는 개념
    • 이차 개념: 다른 개념에서 추상화된 개념
  • 스키마: 여러 개념의 관계
  • 직관적 지능과 반영적 지능
    • 직관적 지능: 감각 기관을 통해 지각된 실제적 대상 사이의 관계 또는 아동 자신의 행동 사이의 관계를 인식하는 능력
    • 반영적 지능: 직관적 지능에 의해 구성된 개념이나 개념 사이의 관계를 인식하고, 내면적 활동을 조정하는 능력

스켐프는 이러한 개념을 바탕으로 이해를 '관계적 이해'와 '도구적 이해'로 구분하고 있다. 관계적 이해는 무엇을 해야 할지 및 왜 그러한지를 모두 알고 있으면서, 일반적인 수학적 관계로부터 특수한 규칙이나 절차를 연역할 수 있는 상태를 의미한다. 반면 도구적 이해는 이유를 모르는 채 암기한 규칙을 문제해결에 적용하는 것을 말한다.(황혜정 외, 2019a: 247) 먼저, 도구적 이해의 장점은 다음과 같다. 첫째, 도구적으로 이해하는 것이 관계적으로 이해하는 것보다 더 쉽다. 둘째, 학생 입장에서 보장이 즉각적이고 분명하다. 셋째, 빠르게 문제를 해결할 수 있다. 반면 관계적 이해의 장점은 다음과 같다. 첫째, 관계적으로 이해했을 때 새로운 과제에 적응하기 쉽다. 둘째, 관계적으로 이해된 수학은 기억하기 쉽다. 셋째, 수학을 관계적으로 이해하는 것은 그 자체가 수학 학습의 효과적인 목적이다. 마지막으로, 관계적 스키마는 질적으로 유기적이기에 스스로 확장하고 성장하려는 성향을 가지며, 내면적으로 동기 유발이 일어난다.(김남희, 2021: 80-81; 강옥기 외, 2012: 79)

10. 딘즈(디너스)의 수학 학습 심리학

(1) 수학적 개념 형성
딘즈(Dienes)는 수학 학습을 "놀이를 통한 구성적 활동"이라고 보고, 수학적 개념 형성 과정의 3단계를 제시하였다. 이 단계는 예비 놀이 단계 → 구조화된 놀이 단계 → 실습 놀이 단계이며, 이러한 단계를 거치며 형성된 수학적 개념은 닫힌 상태(폐)가 되지만, 분석과 적용의 과정에서 열린 상태(개)로 변해 보다 수준 높고 객관적인 재구성이 이루어진다는 것이다. 이와 같은 개념 형성의 사이클을 개폐연속체라고 하였다.(김남희, 2021: 104-105)

(2) 개념 학습 과정
딘즈는 수학 학습에서 구체적인 자료를 사용할 것을 중시하였으며, 다양한 교구를 조작하는 활동으로부터 개념이 발달되고 세련된다고 보았다. 딘즈는 놀이를 통한 수학적 개념의 학습 과정을 다음과 같은 6단계로 설명하고 있다. (김남희, 2021: 105-106)
  • 1단계: 자유놀이 단계
  • 2단계: 규칙놀이(게임) 단계
  • 3단계: 공통성 탐구 단계
  • 4단계: 표현 단계
  • 5단계: 기호화 단계
  • 6단계: 형식화 단계

(3) 수학 학습 원리
딘즈는 자신의 학습 이론을 구현하기 위한 효과적인 학습 원리를 4가지로 제시하고 있는데, 이는 다음과 같다.(황혜정 외, 2019a: 252-253; 김남희, 2021: 107-111)
  • 역동적 원리: 바람직한 수학 학습을 위해서는 역동적인 학습 활동이 전제되어야 한다.
  • 구성적 원리: 아동에게 제시하는 수학적 상황은 분석보다 (직관적인) 구성을 요구하는 것이 우선되어야 한다.
  • 지각적 다양성의 원리: 근본적으로 동일하지만 다르게 보이는 과제를 제시하여 지각적 표현을 변화시킨다.
  • 수학적 다양성의 원리: 개념은 변하지 않게 유지하면서 가능한 한 많은 변인을 변화시킨다.

11. 프로이덴탈의 수학화 교수·학습론

프로이덴탈(Hans Freudenthal)은 수학적 개념, 구조, 아이디어 등의 본질이 물리적, 사회적, 정신적 세계의 현상을 조직하기 위한 수단으로 발견되어 왔다고 주장하며, 이 주장을 교수학적 현상학으로 체계화하였다. 프로이덴탈은 현상을 본질로 조직하는 과정을 수학화로 명명하였다. 가령 자연 현상이나 경제 현상을 함수 관계로 파악하고 기술하는 것은 현실 세계를 수학화하는 것이며, 기하를 대수적 방법으로 다루는 것은 기하를 수학화하는 것이다. 프로이덴탈은 수학을 가르칠 때 연역적인 체계만을 중시하여 지도하는 것을 반교수학적 전도라고 비난하고, 수학의 연역적인 체계만을 중시하는 수학교육 현대화 운동을 비판하였다. 학생들이 스스로의 활동을 통해 수학화 과정을 직접 경험해 봄으로써, 수학의 본질적 측면을 체험시키는 것이어야 함을 주장한 것이다. (황혜정 외, 2019a: 279-281; 강옥기 외, 2012: 223).

12. 반 힐레의 수학 학습 수준 이론

반 힐레(van Hiele)는 기하 학습에 다섯 수준이 존재하며, 기하 교수에서의 주된 문제는 교사가 학생에게 '기대하는 수준과 학생들의 수준의 차이로부터 발생한다. 이 이론은 많은 학생들이 기하 수업에서, 특히 형식적인 증명에서 어려움을 겪는 이유를 잘 설명해 준다. 아울러 기하 학습 수준의 상승을 위한 교수·학습 단계 이론을 제시하였다.(황혜정 외, 2019a: 301-310; 강옥기 외, 2012: 248)
  • 기하 학습 수준 이론
    • 제1수준: 시각적 인식 수준
    • 제2수준: 기술적/분석적 인식 수준
    • 제3수준: 관계적/추상적 인식 수준
    • 제4수준: 형식적 연역 수준
    • 제5수준: 엄밀한 수학적 수준
  • 교수·학습 단계 이론
    • 1단계: 탐색 단계
    • 2단계: 안내된 탐구 단계
    • 3단계: 명료화 단계
    • 4단계: 자유 탐구 단계
    • 5단계: 통합 단계

13. 교수학적 변환론

쉐발라드(Cheval-lard)는 '학문으로서의 수학'(학문적 지식)이 '교육 대상으로서의 수학'(교수학적 지식)으로 변환되기 위해 겪는 과정에 주목하였다. 이와 같이 학문적 지식이 교수학적 지식으로 변환되는 과정에 대한 이론을 교수학적 변환론이라 한다.

교수학적 지식은 다시 '가르칠 지식'과 '학습된(가르쳐진) 지식'으로 구분할 수 있다. 즉, 교수학적 변환론은 수학자의 학문적 지식이 교과서 저자 및 교사 등에 의해 가르칠 지식으로 변환되고, 다시 학생에게 학습된 지식으로 변환되는 것을 의미한다. 교수학적 변환론의 핵심 문제는 두 가지로 요약될 수 있다. 먼저, 교수 체계는 삼원적 관계라는 점이다. 교사와 학생의 이원적 관계가 아닌, 교사와 학생, 지식이라는 삼원적 관계로서 교육을 이해하는 것이 중요하다고 주장한다. 또한, 지식의 파손성에 관한 문제가 있다. 지식을 주의 깊게 다루지 않으면 본래의 의미가 손상되기 쉬우며, 가르치기에 적합하도록 지식을 변형하는 과정에서 왜곡이 발생하지 않도록 유의하여야 한다. (황혜정 외, 2019a: 315-316)

이러한 교수학적 변환의 실제적인 목적은, 교실에서 지식을 효율적으로 학습하도록 변형하는 방법을 찾는 것이다. 브루소(Brousseau)는 지식을 이해·표현·전달하는 과정을 '개인화/배경화'(personalization/contextualization)와 '탈개인화/탈배경화'(depersonalization/decontextualization)의 과정으로 설명하였다. 개인화/배경화는 지식을 인지하고 조직하는 개인적 방법과 관련된 것으로서, 개인에게 의미 있는 지식이 형성되는 과정이다. 탈개인화/탈배경화는 수학적 지식의 이면의 아이디어를 살려 낸 지식을 구조적으로 정돈하는 것으로, 지식을 표현·전달하기 위해 지식을 형식적으로 안정화하는 과정이다.(황혜정 외, 2019a: 320; 김남희, 2021: 266-267)

이와 같은 개인화/배경화 및 탈개인화/탈배경화의 과정은 모두 중요하나, 이 중 어느 하나가 간과되거나 지나치게 강조될 경우 극단적인 교수학적 현상이 발생할 수 있다. 이에 대한 내용은 극단적인 교수학적 현상 문서 참고.

한편 브루소는 특정한 맥학에서 성공적이고 유용하여 학생의 인지 구조의 일부가 되었지만, 새로운 문제해결·개념 이해 등 더 넓어진 문맥에서는 부적합해진 지식을 인식론적 장애(epistemological obstacle)라 부른다. 일상어, 직관, 과도한 일반화, 은유 등이 인식론적 장애 형성에 영향을 줄 수 있다. 가령 "a<b이면 a2<b2"이라는 직관은 양수에서는 유용한 색각이지만, 음수를 학습하는 상황에서는 방해가 될 수 있다.(황혜정 외, 2019a: 329-330)

14. 교사 지식

14.1. 슐만과 PCK

교사의 지식은 수업의 방법·내용·과정에 영향을 미치며, 학생에게 중요한 역할을 한다. 교사는 교육과정 내용은 물론, 교과 내용 및 교수·학습 방법 등을 잘 알고 있어야 한다. 이러한 교사 지식은 교육과정을 해석·실행하는 데에 주요한 영향을 미친다. 슐만(Shulman)은 교사 지식의 유형을 '교과 내용 지식', '교수학적 내용 지식', '교육과정 지식'으로 구분하였다. 그 의미는 다음과 같다.(황혜정 외, 2019b: 127-130)
  • 교과 내용 지식(Subject Matter Knowledge): 어떤 영역의 사실이나 개념 및 교과 구조에 관한 지식
  • 교수학적 내용 지식(Pedagogical Content Knowledge): 교과를 적절하게 표현·조직하는 방법, 학생들의 오개념 등을 고려한 교수 전략 등에 관한 지식
  • 교육과정 지식(Curriculuar Knowledgr): 해당 학년 수준에서 다루어져야 하는 교과의 내용이나 주제에 관한 지식
특히 슐만은 교수학적 내용 지식(PCK)이 내용 전문가와 교사를 구분 짓는 중요한 지식이라고 설명하였다. PCK에는 학생이 내용을 재조직할 수 있는 지식이 포함되며, 교육과정을 재구성하거나 적절한 교수·학습 방법을 활용할 때 PCK가 역할을 한다.

14.2. 볼과 MKT

볼(Ball)은 슐만의 PCK 개념을 바탕으로 수학을 가르치는 데에 필요한 지식을 구체화하였다. '교수를 위한 수학 지식'(Mathematical Knowledge for Teaching, MKT)을 '교과 내용 지식'(Subject Matter Knowledge, SMK)와 '교수학적 내용 지식'(PCK)으로 구분하고, 이를 각각 세 가지로 다시 구분하였다. 그 내용은 아래와 같다.(황혜정 외, 2019b: 136-138)
  • MKT
    • SMK
      • 일반 내용 지식(Common Content Knowledge, CCK): 교사뿐 아니라 수학을 알고 활용하는 누구나 갖고 있을 법한 수학 내용에 대한 지식
      • 전문 내용 지식(Specialized Content Knowledge, SCK): 학생들에게 가르칠 지식보다 약간 높은 수준의 수학 지식
      • 내용 연계 지식(Horizon Content Knowledge, HCK): 수학의 각 주제가 수학 교육과정의 다른 주제와 어떻게 관련되어 있는지 아는 지식 (수학적 연결성과 관련)
    • PCK
      • 학생에 대한 지식(Knowledge of Content and Students, KCS): 수학 내용에 대한 학생의 이해와 관련된 지식[12]
      • 교수에 대한 지식(Knowledge of Content and Teaching, KCT): 학생에 대한 지식을 고려할 때 수학을 어떻게 가르칠 것인지에 대한 지식[13]
      • 교육과정에 대한 지식(Konwledge of Content and Curriculum, KCC): 학교 수학 교육과정에 대한 지식

15. 수학과 평가

평가는 교수·학습의 결과이자 과정으로서의 역할을 한다. 학생의 성취 수준 판단이나 진학 기준 등으로 사용되기도 하며, 학생들의 어려움을 파악하고 차후 수업 계획 및 교수 방법을 수정 및 보완하기 위해 사용되기도 한다.(강옥기 외, 2012: 441) 수업에서의 평가는 학생들의 성장과 발달을 돕기 위한 목적에서, 학습 상태를 점검하고 교사의 수업을 개선하기 위해 활용되어야 한다.(황혜정 외, 2019b: 289) 이러한 평가는 다양한 기준으로 분류할 수 있는데, 대표적인 것을 열거하면 다음과 같다.
  • 평가 목적에 따른 분류
    • 진단평가
    • 형성평가
    • 총괄평가
  • 평가 방법에 따른 분류
    • 서술형 평가
    • 프로젝트
    • 관찰 및 면담
    • 포트폴리오 평가

한편, 2022 개정 수학과 교육과정에서는 다음과 같은 평가 방향 및 방법을 안내하고 있다.(교육부, 2022: 47-49)
{{{#!folding 펼치기·접기
(1) 평가의 방향
(가) 학생의 수학 학습에 대한 정보를 수집⋅활용하여 학생의 주도적 학습과 성장을 지원하고 교사의 수업 개선을 돕도록 지속적으로 평가를 실시한다.
(나) 수학과 교육과정에 제시된 성격, 목표, 내용 체계, 성취기준, 교수⋅학습과 일관성을 가지도록 평가를 실시한다.
(다) 학생의 수학 학습을 돕기 위해 수업과 평가를 통합하여 과정을 중시하는 평가를 실시한다.
(라) 수학 내용 체계의 지식⋅이해, 과정⋅기능, 가치⋅태도를 학습 결과뿐 아니라 학습 과정에서 균형 있게 평가한다.
(마) 학생이 평가 과정에 적극적으로 참여하고 스스로 설정한 수학 학습 목표에 대한 달성 여부를 점검할 수 있게 한다.
(바) 학생의 사회⋅문화적 배경, 신체 특성 등이 불리하게 작용하지 않도록 평가를 실시하고, 학생의 사전 지식, 수학에 대한 흥미, 학습 유형, 학습 수준을 고려하여 평가 목적, 교수⋅학습 내용 및 방법에 따라 다양한 평가 방법을 적용한다.
(사) 진단평가, 형성평가, 총괄평가 등을 적절히 활용하여 수학 학습 과정과 결과에 대한 구체적인 정보를 바탕으로 학생의 특성과 학습 결손을 파악하고 개별적 지원 방안을 마련한다.
(아) 온라인 수학 수업에서 평가를 할 때 학습 환경 등의 외적 요소가 수학 학습 과정과 평가 결과에 영향을 미치지 않도록 한다.
(자) 평가 절차를 개방적이고 공정하게 시행하고 학생의 수학 학습에 대한 의미 있는 정보를 학생, 학부모에게 제공한다.

(2) 평가 방법
(가) 수학 수업과 연계하여 과정을 중시하는 평가를 실시할 때는 다음 사항을 고려한다.
① 성취기준을 중심으로 지식⋅이해, 과정⋅기능, 가치⋅태도 범주를 평가 요소로 구체화한다.
② 교수⋅학습과 연계하여 적절한 평가 도구와 준거를 개발하고 평가를 실시한다.
③ 평가 결과에 기반하여 학생의 학습 정보 및 수행 과정을 학생과 학부모에게 환류한다.

(나) 수학 교과 역량을 평가할 때는 다음 사항을 고려한다.
① 문제해결 역량의 평가는 수학의 개념, 원리, 법칙을 문제 상황에 적절히 활용하는지, 주어진 조건과 정보를 분석하고 적절한 해결 전략을 탐색하여 해결하는지, 문제해결 과정을 돌아보며 절차에 따라 타당하게 결과를 얻어내고 이를 반성하는지, 적극적이고 자신감 있게 문제해결에 참여하는지, 적절한 방법을 찾기 위해 끈기 있게 도전하는지 등을 고려한다.
② 추론 역량의 평가는 수학의 개념, 원리, 법칙을 이해하는지, 논리적으로 절차를 수행하는지, 수학적 지식을 다양한 방법으로 탐구하는지, 관찰에 근거하여 추측하고 일반화를 할 수 있는지, 추측의 근거를 제시하는지, 타당한 정당화를 하는지, 수학에 대한 흥미와 관심을 갖는지, 체계적으로 사고하려는 성향이 있는지, 수학적 증거와 논리적 근거를 바탕으로 비판적으로 사고하는 태도를 갖는지 등을 고려한다.
③ 의사소통 역량의 평가는 수학 용어, 기호, 표, 그래프 등 수학적 표현을 이해하고 정확하게 사용하는지, 적절한 수학적 표현을 선택할 수 있는지, 수학적 표현 간에 변환을 할 수 있는지, 수학적 아이디어나 수학 학습 과정 및 결과에 대해 표현하고 다른 사람의 견해를 이해하는지, 수학적 표현의 편리함을 인식하는지, 타인을 배려하고 의견을 존중하는지 등을 고려한다.
④ 연결 역량의 평가는 영역이나 학년(군) 내용 사이에서 개념, 원리, 법칙을 적절하게 관련지어 이해하는지, 수학의 개념, 원리, 법칙을 연계하여 새로운 지식을 생성할 수 있는지, 수학을 실생활이나 타 교과의 지식, 기능, 경험에 적용할 수 있는지, 실생활이나 타 교과의 지식, 기능, 경험을 수학적으로 해석할 수 있는지, 수학을 바탕으로 창의적으로 관련성을 찾을 수 있는지, 수학의 유용성을 인식하는지 등을 고려한다.
⑤ 정보처리 역량의 평가는 자료와 정보를 목적에 맞게 수집하고 변환하고 정리하는지, 자료를 바탕으로 도출한 결론이 적절한지, 교구나 공학 도구를 적절하게 활용하는지, 수학적 근거를 바탕으로 합리적으로 의사 결정하는 태도를 갖는지 등을 고려한다.

(다) 학생의 수학 학습 과정과 결과는 다양한 평가 방안을 사용하여 양적 또는 질적으로 평가한다.
① 지필평가는 수학 내용 체계의 지식⋅이해, 과정⋅기능을 평가하는 데 활용할 수 있고, 선택형, 단답형, 서⋅논술형 등의 다양한 문항 유형을 사용할 수 있다.
② 프로젝트 평가는 학생 스스로 특정 주제나 과제를 탐구하고 해결하기 위해 계획을 수립하고 수행하는 과정과 그 결과물을 평가하는 방안으로, 수학 내용 체계의 세 범주를 종합적으로 평가할 때 활용할 수 있다.
③ 포트폴리오 평가는 학생의 성장에 대한 정보를 얻기 위해 수학 학습 수행과 그 결과물을 일정 기간 수집하여 평가하는 방안으로, 수학 교과 역량의 발달을 종합적으로 평가할 때 활용할 수 있다.
④ 관찰 평가, 면담 평가, 구술 평가는 학생 개인 및 소집단을 관찰, 학생과의 질의응답, 학생의 발표를 통해 평가하는 방안으로, 학생의 사고 방법, 수행 과정, 수학 내용 체계의 가치⋅태도 등을 평가할 때 활용할 수 있다.
⑤ 자기 평가는 학생 스스로 자신의 학습 과정과 결과를 평가하는 방안으로, 수학 내용의 이해와 수행 과정, 문제해결과 추론 과정의 반성, 자신의 생각 표현, 수학 내용 체계의 가치⋅태도 등을 평가할 때 활용할 수 있다.
⑥ 동료 평가는 동료 학생들이 상대방을 서로 평가하는 방안으로, 협력 학습 상황에서 학생 개개인의 역할 수행이나 집단 활동의 기여를 평가할 때 활용할 수 있다.

(라) 교구나 공학 도구를 활용하여 평가할 때는 다음 사항을 고려한다.
① 성취기준의 도달 여부를 판단하는 데 교구나 공학 도구의 사용이 효과적인 경우 이를 활용한 평가를 실시할 수 있다.
② 교구나 공학 도구를 활용하여 평가할 때는 교구나 공학 도구의 기능 및 조작이 아닌 수학 내용의 탐구 과정을 평가한다.

(마) 온라인 수학 교수⋅학습 환경에서 평가할 때는 다음 사항을 고려한다.
① 온라인 수학 학습에서는 학생의 활동에 근거한 구체적인 자료를 사용하여 평가한다.
② 온라인 학습 플랫폼이나 학습 관리 시스템을 이용하여 학생의 수행 과정을 관찰하고 개별 맞춤형으로 환류할 수 있다.
③ 학생의 접속 환경 미비로 인한 불참 시 기회 부여 등에 대해 방안을 마련하고 형평성의 문제가 제기되지 않도록 사전에 안내한다.}}}

16. 수학교육과 공학적 도구(테크놀로지)

16.1. 공학적 도구의 장점

테크놀로지의 도입이 수학교육의 방법론에 기여할 수 있는 측면은 크게 실세계와 수학의 연결, 수학적 대상과 관계의 구체화, 수학의 다양한 표현 체계의 연결, 사고력 중심의 수학 교수·학습 활동이 있다.

먼저 실세계와 수학의 연결 측면에서, 컴퓨터는 수학적 현상을 탐구하는 도구로 이용될 수 있다. 일상적인 경험을 컴퓨터로 반복 시뮬레이션함으로써 수학의 세계를 친밀하게 느낄 수 있고, 수학 이론과 실험 결과를 결합할 수 있다. 가령, 몬티 홀 문제를 시뮬레이션함으로써 조건부확률의 개념을 실세계와 연결하여 이해할 수 있다.

다음으로 수학적 대상과 관계의 구체화의 측면에서, 공학적 도구를 이용하면 추상적인 수학적 대상 간의 관계를 구체적으로 살펴볼 수 있다. 특히 기하 교수·학습에 많은 영향을 미치는데, GeoGebra와 같은 역동적 기하 소프트웨어(Dynamic Geometry Software, DGS)를 이용하면 점을 움직일 때 변하지 않는 성질을 연구할 수 있다. 가령 삼각형의 내접원을 탐구할 때, 예각삼각형, 직각삼각형, 둔각삼각형의 내접원과 내심을 그려 봄으로써 딘즈가 주장하는 수학적 다양성의 원리를 적용할 수 있다.

또한 수학의 다양한 표현 체계의 연결 측면에서, 컴퓨터 기반 학습을 통해 수학의 다양한 표현을 한 화면에서 확인하고 서로 연결할 수 있다. 가령 점의 순서쌍을 표로 나타낸 것과 그래프로 나타낸 것을 동시에 봄으로써, 두 표현이 가지는 공통점에 주목할 수 있고, 그 속에 담긴 함수의 의미를 더욱 충실하게 이해할 수 있다.

마지막으로 사고력 중심의 수학 교수·학습 활동의 측면에서, 복잡한 계산이나 문자 식 처리가 문제해결의 본질적인 사항이 아닐 경우 공학적 도구를 이용하면 더욱 본질적인 사고력을 중심으로 수학 교수·학습 활동을 진행할 수 있게 된다. 가령 분수식의 적분을 학습할 때, 부분분수로 분해하는 것에 시간을 빼앗기기보다 컴퓨터 대수 시스템(Computer Algebra System, CAS)을 이용하여 부분분수 분해 결과를 확인하고 이를 이용하여 적분이라는 본질에 집중할 수 있게 된다. 한편, 컴퓨터 프로그래밍 활동 역시 수학적 사고력 신장에 도움을 준다.(강옥기 외, 2012: 415-421)

16.2. 컴퓨터를 이용한 수학 교수·학습 양식

컴퓨터를 활용한 교수·학습 양식은 크게 개인 교사형, 학생 주도형, 보조 도구형, 탐구 학습형으로 구분할 수 있다. 이 네 가지 양식의 특징과 활용 시의 유의점은 다음과 같다.(강옥기 외, 2012: 421-426)
  • 개인 교사형
    • 전통적인 교사의 역할을 컴퓨터가 대신하는 양식
    • 대부분의 컴퓨터 보조학습(Computer Assistant Instruction, CAI) 소프트웨어가 여기에 속함
    • 학생의 반응 방식에 입각해 학생들에게 가장 필요한 정보를 제공
    • 학생들이 수학 개념을 명확히 이해했는지를 보장할 수 없음
  • 학생 주도형
    • 학생이 구성하여 입력하는 논리적인 단계를 컴퓨터로 하여금 수행하도록 함
    • 그 결과를 살펴봄으로써 자신의 사고 과정을 반성
    • 오개념을 극복할 수 있다는 연구와 오개념을 심화시킨다는 연구가 공존
  • 보조 도구형
    • 수학적인 절차를 수행하는 소프트웨어(CAS 등)를 사용
    • 반복적인 중간 과정을 신속하게 처리하여 시간을 효율적으로 사용할 수 있음
    • 기호 조작 자체가 교수·학습의 목적인 경우에는 이러한 소프트웨어를 사용할 수 없음
    • 스프레드시트 프로그램 등도 활용 가능
  • 탐구 학습형
    • 학생 주도형과 보조 도구형이 결합된 양식
    • 학생의 통제 하에 대상들 간의 관계를 탐구
    • LOGO가 대표인 프로그램

16.3. 교사의 테크놀로지 내용교수지식(TPACK)

공학적 도구(테크놀로지)를 활용하려는 교사가 갖추어야 할 역량을 TPACK이라 한다(최경식, 2024). TPACK이라는 용어는 테크놀로지 지식(Technology Knowledge, TK), 교수학적 지식(Pedagogical Knowledge, PK), 내용 지식(Content Knowledge, CK)을 강조하면서, 이 요인들이 서로 독립된 것이 아니라 통합된 전체(Total PACKage)라는 의미를 담고 있다(임해미, 2009). 수학 수업에서 테크놀로지를 활용할 경우 즉각적인 피드백, 사고과정에 대한 점검 기회의 확장, 표상 간의 연결성과 번역 능력의 확장, 도형의 다양한 성질 추측 및 탐구, 수학 개념 이해의 촉진, 학습자 중심의 수업활동 등의 측면에서 긍정적인 면이 있으나, 현실적으로 교사들은 TPACK 역량의 부족으로 인해 수업 시간에 테크놀로지를 잘 활용하지 못하고 있다(이다희, 황우형, 2018). TPACK 발달을 위해서는 TCK와 TPK가 균형 있게 발달하여야 하며, 교사는 가르치는 학생 및 교실 상황에 따라 유연하게 테크놀로지를 선택하고 활용할 수 있어야 한다.

17. 수학교재론

수학교재론은 교육할 내용을 조금 더 교육적으로 정교화하는 것에 대한 이론이다. 즉 학문으로서의 수학(수학자)에서 출발하여 학습 활동(학생)에 이르기까지 복잡하고 다차원적인 변화를 고찰하는 것이다.(황혜정 외, 2019a: 33) 학교 수학의 내용을 몇 개의 영역으로 구분하는 방식은 다양하나, 김남희 외(2017)는 이를 '수와 연산', '대수', '함수', '기하와 증명', '미분과 적분', '확률과 통계'의 6개 영역으로 구분하고 각 영역별 지도의 의의, 역사적 발달, 관련된 수학교육학적 연구, 교육과정의 이해, 교과서의 이해, 수업의 이해, 공학적 도구 활동 등을 설명하였다.

18. 참고문헌

  • 강옥기, 강윤수, 고상숙, 고호경, 권나영, 김구연, 김래영, 김민경, 김응환, 김익표, 노선숙, 서보억, 신재홍, 이수진, 이중권, 정인철, 한인기, 허혜자, 황우형(2012). 수학교육학 신서. 서울: 교우사.
  • 김남희(2021). 문제를 해결하며 학습하는 수학교육학. 서울: 경문사.
  • 김남희, 나귀수, 박경미, 이경화, 정영옥(2017). 예비교사와 현직교사를 위한 수학교육과정과 교재연구. 서울: 경문사.
  • 교육부(2022). 수학과 교육과정. 교육부고시 제2022-33호 [별책 8].
  • 이다희, 황우형(2018). 수학교사의 테크놀로지 교수 내용 지식(TPACK)에 대한 연구: TPACK에 대한 인식 및 교육요구도 분석 중심으로. 수학교육, 57(1), 1-36.
  • 임해미(2009). 예비 수학교사의 테크놀로지 내용교수지식(TPACK) 신장을 위한 팀 프로젝트 효과 연구. 수학교육학연구, 19(4), 545-564.
  • 최경식(2024). 알지오매스 활용 수학 교수 학습(중학교 함수, 기하편). 경기: 지오북스.
  • 황혜정, 나귀수, 최승현, 박경미, 임재훈, 서동엽(2019a). 수학교육학신론 1. 경기: 문음사.
  • 황혜정, 최승현, 조성민, 박지현(2019b). 수학교육학신론 2. 경기: 문음사.


[1] 집합, 함수, 확률, 대수적 개념 등과 관련된 용어 및 기호[2] 군, 환, 체 등 현대수학의 개념을 활용하여 수학적 개념을 추상적이고 통합적으로 다룬다.[3] 유클리드 기하 등[4] 예: 피보나치 수열. 1, 1, 2, 3, 5, 8, 13, ...[5] 처음 두 수는 1과 1이다, 연속하는 항의 비는 황금비에 수렴한다 등[6] 처음 두 수가 같지 않다면? 처음 두 수를 10과 7이라 하자. 10, 7, 17, 24, 41, 65, 106, ...[7] 변형된 피보나치 수열에서 연속하는 항의 비의 극한은? 등[8] 동일하게 황금비에 수렴한다 등[9] 개수를 세기 위하여 색칠을 하는 행동, 덧셈 문제를 손가락으로 계산하는 활동 등[10] 수도(數圖), 벤 다이어그램, 그래프, 수형도 등[11] 수식, 기호, 변수 등[12] 학생들이 수학을 어떻게 이해하는지, 어떻게 생각하고 어떤 내용을 어려워하는지 등[13] 학생들의 수학적 사고·표현·오개념 등에 따라 적절한 교수 방법을 선택하고 계획하는 것과 관련