최근 수정 시각 : 2025-04-03 17:45:03

√2


파일:다른 뜻 아이콘.svg  
#!if 넘어옴1 != null
'''루트2'''{{{#!if 넘어옴2 != null
, ''''''}}}{{{#!if 넘어옴3 != null
, ''''''}}}{{{#!if 넘어옴4 != null
, ''''''}}}{{{#!if 넘어옴5 != null
, ''''''}}}{{{#!if 넘어옴6 != null
, ''''''}}}{{{#!if 넘어옴7 != null
, ''''''}}}{{{#!if 넘어옴8 != null
, ''''''}}}{{{#!if 넘어옴9 != null
, ''''''}}}{{{#!if 넘어옴10 != null
, ''''''}}}은(는) 여기로 연결됩니다. 
#!if 설명 == null && 리스트 == null
{{{#!if 설명1 == null
다른 뜻에 대한 내용은 아래 문서를}}}{{{#!if 설명1 != null
{{{#!html 에로게 제작회사}}}에 대한 내용은 [[Route2]] 문서{{{#!if (문단1 == null) == (앵커1 == null)
를}}}{{{#!if 문단1 != null & 앵커1 == null
의 [[Route2#s-|]]번 문단을}}}{{{#!if 문단1 == null & 앵커1 != null
의 [[Route2#|]] 부분을}}}}}}{{{#!if 설명2 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단2 == null) == (앵커2 == null)
를}}}{{{#!if 문단2 != null & 앵커2 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단2 == null & 앵커2 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명3 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단3 == null) == (앵커3 == null)
를}}}{{{#!if 문단3 != null & 앵커3 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단3 == null & 앵커3 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명4 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단4 == null) == (앵커4 == null)
를}}}{{{#!if 문단4 != null & 앵커4 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단4 == null & 앵커4 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명5 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단5 == null) == (앵커5 == null)
를}}}{{{#!if 문단5 != null & 앵커5 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단5 == null & 앵커5 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명6 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단6 == null) == (앵커6 == null)
를}}}{{{#!if 문단6 != null & 앵커6 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단6 == null & 앵커6 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명7 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단7 == null) == (앵커7 == null)
를}}}{{{#!if 문단7 != null & 앵커7 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단7 == null & 앵커7 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명8 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단8 == null) == (앵커8 == null)
를}}}{{{#!if 문단8 != null & 앵커8 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단8 == null & 앵커8 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명9 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단9 == null) == (앵커9 == null)
를}}}{{{#!if 문단9 != null & 앵커9 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단9 == null & 앵커9 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명10 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단10 == null) == (앵커10 == null)
를}}}{{{#!if 문단10 != null & 앵커10 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단10 == null & 앵커10 != null
의 [[#|]] 부분을}}}}}}
#!if 설명 == null
{{{#!if 리스트 != null
다른 뜻에 대한 내용은 아래 문서를}}} 참고하십시오.

#!if 리스트 != null
{{{#!if 문서명1 != null
 * {{{#!if 설명1 != null
에로게 제작회사: }}}[[Route2]] {{{#!if 문단1 != null & 앵커1 == null
문서의 [[Route2#s-|]]번 문단}}}{{{#!if 문단1 == null & 앵커1 != null
문서의 [[Route2#|]] 부분}}}}}}{{{#!if 문서명2 != null
 * {{{#!if 설명2 != null
: }}}[[]] {{{#!if 문단2 != null & 앵커2 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단2 == null & 앵커2 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명3 != null
 * {{{#!if 설명3 != null
: }}}[[]] {{{#!if 문단3 != null & 앵커3 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단3 == null & 앵커3 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명4 != null
 * {{{#!if 설명4 != null
: }}}[[]] {{{#!if 문단4 != null & 앵커4 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단4 == null & 앵커4 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명5 != null
 * {{{#!if 설명5 != null
: }}}[[]] {{{#!if 문단5 != null & 앵커5 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단5 == null & 앵커5 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명6 != null
 * {{{#!if 설명6 != null
: }}}[[]] {{{#!if 문단6 != null & 앵커6 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단6 == null & 앵커6 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명7 != null
 * {{{#!if 설명7 != null
: }}}[[]] {{{#!if 문단7 != null & 앵커7 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단7 == null & 앵커7 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명8 != null
 * {{{#!if 설명8 != null
: }}}[[]] {{{#!if 문단8 != null & 앵커8 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단8 == null & 앵커8 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명9 != null
 * {{{#!if 설명9 != null
: }}}[[]] {{{#!if 문단9 != null & 앵커9 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단9 == null & 앵커9 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명10 != null
 * {{{#!if 설명10 != null
: }}}[[]] {{{#!if 문단10 != null & 앵커10 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단10 == null & 앵커10 != null
문서의 [[#|]] 부분}}}}}}


수학상수
Mathematical Constants
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
[math(0)]
(덧셈의 항등원)
[math(1)]
(곱셈의 항등원)
[math(sqrt{2})]
(최초로 증명된 무리수)
[math(^\ast)]
[math(495)], [math(6174)]
(카프리카 상수)
[math(0)], [math(1)], [math(3435)], [math(438579088)]
(뮌하우젠 수)
[math(pi)]
(원주율)
[math(^{\ast\ast})]
[math(tau)]
(새 원주율)
[math(^{\ast\ast})]
[math(e)]
(자연로그의 밑)
[math(^{\ast\ast})]
[math(varphi)]
(황금비)
[math(^\ast)]
[math(i)]
(허수단위)
[math(G)]
(카탈랑 상수)
[math(^{\ast?})]
[math(zeta(3))]
(아페리 상수)
[math(^{\ast\ast?})]
[math({rm Si}(pi))]
(윌브레이엄-기브스 상수)
[math(^{\ast?})]
[math(gamma)]
(오일러-마스케로니 상수)
[math(^{\ast?})]
[math(gamma_n)]
(스틸체스 상수)
[math(^{\ast?})]
[math(Omega)]
(오메가 상수)
[math(^{\ast\ast})]
[math(2^{sqrt{2}})]
(겔폰트-슈나이더 상수)
[math(^{\ast\ast})]
[math(C_n,)]
(챔퍼나운 상수)
[math(^{\ast\ast})]
[math(A,)]
(글레이셔-킨켈린 상수)
[math(^{\ast?})]
[math(A_k,)]
(벤더스키-아담칙 상수)
[math(^{\ast?})]
[math(-e, {rm Ei}(-1))]
(곰페르츠 상수)
[math(^{\ast?})]
[math(mu)]
(라마누잔-졸트너 상수)
[math(^{\ast?})]
[math(B_{2})], [math(B_{4})]
(브룬 상수)
[math(^{\ast?})]
[math(rho)]
(플라스틱 상수)
[math(^\ast)]
[math(delta)], [math(alpha)]
(파이겐바움 상수)
[math(^{\ast?})]
[math(G)]
(란다우 상수)
[math(^{\ast?})]
[math(C_A)]
(아르틴 상수)
[math(^{\ast?})]
[math(^{\ast?})] 유리수인지 무리수인지 밝혀지지 않음
}}}}}}}}} ||
제곱근 이() {{{#!wiki style="display: inline; display: none"
square root of two
·
· (서수)
√2
<colbgcolor=#F5F5F5,#2E3033> 종류 대수적 무리수
,
*
약수
제곱
· 제곱근
, ±
, ±
문화권별 숫자 표기
(해당 없음)
{{{#!wiki style="display: none; display: 1; margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="display: block; display: none; margin: -5px -2px -11px"
<nopad> 로마 숫자
,
}}}{{{#!wiki style="display: block; display: none; margin: -5px -2px -11px"<tablealign=center><tablewidth=100%><nopad> 그리스 숫자
[ruby(Μ, ruby=)]
}}}{{{#!wiki style="display: block; display: none; margin: -5px -2px -11px"<tablealign=center><tablewidth=100%><nopad> 동부 아라비아 숫자 }}}{{{#!wiki style="display: block; display: none; margin: -5px -2px -11px"<tablealign=center><tablewidth=100%><nopad> 갖은자 }}}{{{#!wiki style="display: block; display: none; margin: -5px -2px -11px"<tablealign=center><tablewidth=100%><nopad> 이체자
}}}}}}}}}


1. 개요2. 유리수가 아님을 증명
2.1. 더 엄밀한 증명
3. 여담4. 여러 가지 분수 근삿값

1. 개요

제곱하면 2가 되는 무리수이다. 무리수라는 사실이 증명된 최초의 수이기도 하다. 1.414141...같은 순환소수도 아니고 다른 규칙이 있는 무리수도 아닌데 어떻게 무리수인지 증명했는지는 아래 문단으로.

한 변의 길이가 1인 정사각형대각선의 길이이며, 방정식 [math(x^2 = 2)]의 두 실수해 중 양수인 해다. 피타고라스 정리 문서로.

[math(\sqrt2)]의 소수점 아래 20자리까지는 1.4142135623 7309504880이다. 근삿값으로 [math(\dfrac{99}{70})]이 제시되는데, 이 값은 [math(1.4\dot14285\dot7)]로, 소수점 4자리까지 맞을 정도로 유사한 값이다.[1]

무한 지수 탑 함수에 넣으면 2가 된다.

2. 유리수가 아님을 증명[2]

유클리드(에우클레이데스)는 귀류법의 일종인 무한강하법을 이용하여 [math(\sqrt{2})]가 유리수가 아니라는 것을 증명했다.
[math(\sqrt{2})]가 유리수라고 가정하면 [math(\sqrt{2} = \dfrac{a}{b})] (단, [math(a)], [math(b)]는 서로소인 자연수)로 나타낼 수 있다.
양변을 제곱하면 [math(2=\dfrac{a^2}{b^2})]이고, [math(2b^2=a^2)]이므로 [math(a^2)]은 짝수이다. 이때 자연수의 제곱이 짝수이면 제곱하기 전의 자연수도 짝수이므로 [math(a)]도 짝수이다.
[math(a=2k)]라고 하고 이를 [math(2b^2=a^2)]에 대입하면 [math(2b^2=\left(2k\right)^2=4k^2)]이고, [math(b^2=2k^2)]이다. 따라서 [math(b^2)]은 짝수이고, 같은 방법으로 [math(b)]도 짝수이다.
[math(a)]와 [math(b)]가 모두 짝수라는 것은 둘 다 공약수 2를 가지고 있다는 것이다. 이는 [math(a)], [math(b)]가 서로소라는 가정에 모순이므로 [math(\sqrt{2})]는 유리수가 아니다.

이 문제는 과거 본고사 시절 서울대학교에서 출제되어 당시 학생들을 충격과 공포로 몰아넣은 적이 있다.[3] 이 문제가 어찌나 파급력이 컸던지, 그 뒤로 나오는 거의 모든 출판사의 수학 교과서에서 귀류법의 대표적인 예시로 소개되고 있다. 덕분에 현재에도 대한민국 학생에게는 나름 친숙한 증명법이 되었다.

2.1. 더 엄밀한 증명

다만 [math(\sqrt{2})]가 무리수임을 증명하기 위해서는 추가로 "[math(\sqrt{2})]는 실수이다."[4]"유리수를 기약분수꼴로 나타낼 수 있다."라는 너무나 당연해 보이는 명제도 증명해야 한다.[5]

첫 번째 명제는 아래와 같이 엄밀하게 증명한다. 대학교 수학과 2학년 해석학에서 배우는 증명이다.
실수의 부분집합 [math(S=\left\{x\in \mathbb{Q} | x^2<2\right\})]를 정의하자. 그러면 [math(S)]는 공집합이 아니고 위로 유계이므로 상한 [math(c)]가 존재한다.[6] 이때 [math(0<c\notin S)]이므로 [math(c^2\geq 2)]이다. 그런데 [math(c^2>2)]라고 하면 [math(\left(c-\varepsilon\right)^2>2)]인 양수 [math(\varepsilon)]이 존재한다. 그러면 상한의 정의에 의해 [math(c-\varepsilon)]은 [math(S)]의 상계가 아니므로 [math(c-\varepsilon<x)]인 양의 유리수 [math(x\in S)]가 존재한다. 여기서 [math(2<\left(c-\varepsilon\right)^2<x^2)]가 되어 모순이다. 따라서 [math(c^2=2)]이고, [math(\sqrt{2})]가 실수임을 알 수 있다.
[math(\sqrt{2})]가 유리수라고 가정하자. 그럼 [math(\displaystyle \sqrt{2} = \frac{a}{b})]를 만족하는 자연수 [math(a, b)]가 무수히 많이 존재한다. 집합 [math(A)]를 [math(\displaystyle A = \left\{b \in \mathbb{N} \, | \, \exists a \in \mathbb{Z}: \sqrt{2} = \frac{a}{b} \right\})]로 정의하자. 자연수의 well-ordering 원리에 의해 집합 [math(A)]에는 가장 작은 원소 [math(b_0)]가 존재한다. 그럼 적당한 정수 [math(a_0)]에 대해 [math(displaystyle sqrt{2} = frac{a_0}{b_0})]이다.
양변을 제곱하여 정리하면 [math(2{b_0}^2 = {a_0}^2)]이다. 여기서 만일 [math(a_0)]가 홀수라면 좌변은 짝수이고 우변은 홀수이므로 모순. 따라서 [math(a_0)]도 짝수여야 한다. 적당한 정수 [math(c)]에 대해 [math(a_0 = 2c)]라 하고 원래 식에 대입하면 [math({b_0}^2 = 2c^2)]이고 따라서 [math(b_0)]도 짝수이다. 이제 적당한 자연수 [math(n)]에 대해서 [math(b_0 = 2n)]라 하면 [math(\displaystyle \sqrt{2} =\frac{a_0}{b_0} = \frac{c}{n})]이다. 그런데 [math(n)]은 [math(A)]의 원소이고 [math(b_0)]보다 작다. 이는 [math(b_0)]가 가장 작은 원소라는 가정에 모순된다. 따라서 [math(\sqrt{2})]는 유리수가 아니다.

두 번째 명제는 아래와 같이 엄밀히 증명한다. 대학교 수학과 3학년 현대대수학의 개념을 이용한다.
산술의 기본정리에 의하여 정수환 [math(\mathbb{Z})]는 유일인수분해 정역(UFD)이므로, 임의의 정수 [math(a)], [math(b)]는 최대공약수 [math(d:=\mathrm{gcd}(a,b))]를 갖는다. 따라서 [math(a=da')]와 [math(b=db')]로 놓으면 [math(a')]와 [math(b')]는 서로소이다.
그리고 유리수체 [math(\mathbb{Q})]는 정수환 [math(\mathbb{Z})]의 분수체(field of fractions)이며, 윗줄의 표기법을 쓰면 [math(\mathbb{Q})] 위에서 [math((a,b)\sim (a',b'))]임을 쉽게 알 수 있다.[7] 여기에서 [math((a',b'))]는 기약분수이므로, 임의의 유리수 [math(\displaystyle \frac{a}{b})]는 약분하여 기약분수 [math(\displaystyle \frac{a'}{b'})]로 만들 수 있음이 증명되었다.

유클리드보다 시대적으로 앞선 피타고라스 시대에도 [math(\sqrt{2})]가 유리수가 아니라는 것은 알고 있었을 것으로 추측되지만, 별다른 기록이 남아 있지 않다. 오히려 그런 수의 존재를 부정했다는 기록은 남아 있다.[8] 이와는 다르게 유클리드의 증명은 그의 저서 원론에 나와 있다.

고대 그리스보다 1000년 이상 앞선 기원전 1600~1800년 전 유물인 바빌로니아Ybc7289 점토판에는 대각선이 그어진 정사각형이 새겨져 있는데, 사각형 가운데에 60진법 쐐기 숫자가 몇 개 새겨져 있다. 가운데 윗 줄의 4개 숫자는 각각 1, 24, 51, 10으로, 60진법 소수로 1.24:51:10으로 해독된다. 10진법으로 환산하면 1.41421296...인데, 소수점 5자리까지 정확한 [math(\sqrt{2})]의 값이다. 이 외에도 다른 유물들을 통해 바빌로니아인들이 어떤 수의 제곱근을 근사하는 방식은 잘 알고 있었다는 것은 분명히 알 수 있지만[9] 바빌로니아인들이 무리수의 존재를 인식했거나, 유리수와 따로 분류했었는지는 알 수 없다.[10]

3. 여담

2011년에 일본의 한 회사원인 곤도 시게루라는 사람이 [math(\sqrt{2})]의 값을 소수점 이하로 1조 자리까지 계산하여 세계 신기록을 세운 바 있다. 이 사람은 원주율 계산 부문에서 세계 신기록을 달성한 전적도 있는데, 수학자도 아닌 일개 회사원이 이런 업적을 세웠기 때문에, 한동안 세간의 화제를 모은 바 있다.

4. 여러 가지 분수 근삿값

당연하겠지만 분모와 분자의 크기가 클수록 평균적으로 정밀한 근사가 가능하다. 다만 [math(\dfrac{10000}{7071})]처럼 정밀성은 바로 전단계보다 떨어지지만 수치가 의미가 있어서 등재할 수도 있다. 이 문단에서는 분모가 1만을 넘거나, 분모가 10, 100, 1000인 것들은 쓰지 않는다.

[math(\dfrac{3}{2})], [math(\dfrac{10}{7})], [math(\dfrac{17}{12})], [math(\dfrac{58}{41})], [math(\dfrac{99}{70})], [math(\dfrac{140}{99})], [math(\dfrac{577}{408})], [math(\dfrac{1000}{707})], [math(\dfrac{1393}{985})], [math(\dfrac{3363}{2378})], [math(\dfrac{8119}{5741})], [math(\dfrac{10000}{7071})]
[1] 물론 99라서 상당히 불편해보인다. 하지만 이는 분자와 분모가 자연수인 분수로는 분자와 분모의 크기가 가장 작고([math(\dfrac{10}7)]은 예외) [math(\sqrt2)]에 가깝기 때문에 제시된 것이지, 이보다 가깝게 하는 분수는 굳이 소수점 뒤에 숫자를 많이 쓰지 않아도 얼마든지 만들 수 있다. 굳이 분자를 10의 배수로 하겠다면 [math(\dfrac{10000}{7071})] 정도가 적당하다. 이 값은 1.41422712488로, 오히려 [math(\dfrac{99}{70})]보다도 [math(\sqrt2)]의 값에 더 가깝다. 더 가깝게 하려면 소수점 뒤에 1도 아닌 07을 붙여야 할 정도로 가깝다. 거기에 차이가 약 0.00005858...이다.[2] 사실 아래 방식을 적용해서 유리수가 아니니 무리수라는 주장대로라면 ii 역시 무리수라는 잘못된 결론을 도출할 수도 있다.그래서 이쪽이 더욱 정확한 명칭이다.[3] 당시 답안 중에는 "심각하게 생각해 보았는데 [math(\sqrt{2})]는 무리수이다." "아무리 생각해 보아도 [math(\sqrt{2})]는 무리수이다."같은 것도 있었다고 한다.(...)#[4] 정확히 말하면 실수 중에 2의 제곱근이 있다는 것을 증명해야 한다. 실수의 정의 자체가 유리수+무리수 이기 때문에 실수에 속한다는 것을 증명한다면 유리수가 아니라는 증명과 합쳐서 [math(\sqrt{2})]가 무리수라는 것을 도출할 수 있다.[5] 간단하게, 위의 예시에서 [math(\sqrt{2})]를 허수 [math(i)]로 바꿔보자. [math(i)]가 무리수가 되는 기적(?)을 이끌어낼 수 있다. 유리수가 아닐 경우 무리수인 실수이거나 아니면 아예 실수가 아닐 텐데 저 증명에서는 유리수가 아니니 무리수라고 본 것이다.[6] 위로 유계=상계, 집합 S의 모든 원소보다 크거나 같은 실수들. 상계 중 최솟값인 상계최소(=상한)가 존재한다. 상한 c는 집합 S의 모든 원소보다 크거나 같은 실수 중 가장 작은 실수이다.[7] 물론 [math(b\neq 0)]이다.[8] 널리 알려진 히파소스의 일화가 이에 해당한다.[9] 너무 유명해 Babylonian method라는 이름까지 있는 방법이다. 방법만 알면 임의의 정수의 제곱근의 근삿값을 매우 빠르게 찾을 수 있다. 제곱근 문서로.[10] 물론 그 당시에도 수에 대한 인식이 없었던 건 아니다. 단지 무리수는 비교적 최근에야 그 존재가 인식되었을 뿐이다.