최근 수정 시각 : 2024-04-23 09:13:48

자연로그의 밑

수학상수
Mathematical Constants
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
[math(^\ast)] 초월수임이 증명됨.
[math(0)]
(덧셈의 항등원)
[math(1)]
(곱셈의 항등원)
[math(sqrt{2})]
(최초로 증명된 무리수)
[math(495)], [math(6174)]
(카프리카 상수)
[math(0)], [math(1)], [math(3435)], [math(438579088)]
(뮌하우젠 수)
[math(pi)]
(원주율)
[math(^\ast)]
[math(tau)]
(새 원주율)
[math(^\ast)]
[math(e)]
(자연로그의 밑)
[math(^\ast)]
[math(varphi)]
(황금수)
[math(i)]
(허수단위)
[math(G)]
(카탈랑 상수)
[math(zeta(3))]
(아페리 상수)
[math({rm Si}(pi))]
(윌브레이엄-기브스 상수)
[math(gamma)]
(오일러-마스케로니 상수)
[math(gamma_n)]
(스틸체스 상수)
[math(Omega)]
(오메가 상수)
[math(^\ast)]
[math(2^{sqrt{2}})]
(겔폰트-슈나이더 상수)
[math(^\ast)]
[math(C_n,)]
(챔퍼나운 상수)
[math(^\ast)]
[math(A,)]
(글레이셔-킨켈린 상수)
[math(A_k,)]
(벤더스키-아담칙 상수)
[math(-e, {rm Ei}(-1))]
(곰페르츠 상수)
[math(mu)]
(라마누잔-졸트너 상수)
[math(B_{2})], [math(B_{4})]
(브룬 상수)
[math(rho)]
(플라스틱 상수)
[math(delta)], [math(alpha)]
(파이겐바움 상수)
}}}}}}}}} ||


1. 개요2. 상세
2.1. 구체적인 값
3. 정의
3.1. 극한을 이용한 정의3.2. 정적분을 이용한 정의3.3. 급수를 이용한 정의
4. 용어 논란5. 기타

1. 개요

자연로그의 밑에 대한 설명 (한국어)

자연로그를 정의하는 상수.

2. 상세

이 값은 무리수이면서 초월수로, 소수 열째 자리까지 나타내면 [math(2.7182818284\cdots)]이다. 언급할 때마다 숫자열을 일일이 나열하는 것이 번거롭기에 원주율([math(\pi)])처럼 상수 [math(e)]로 표기되는데 오일러가 이렇게 썼다. 오일러(Euler)의 첫 글자를 땄다는 설이 있는데 이는 사실무근이며, 자연로그의 밑은 지수함수에서도 밑이므로 지수함수(exponential function)의 앞글자에서 따온 거란 이야기가 지배적이다. 지수 부분에 복잡한 함수가 포함되는 경우 지수 표기(위첨자)로 나타내면 알아보기 어렵기 때문에 Exponential의 앞 세글자들 따 삼각함수로그함수처럼 [math(\exp)]로 쓰는 경우가 많다.([math(e^{x}=\exp{x})] 형태로 쓴다. 지수가 순허수인 경우 [math(e^{ix}=\operatorname{cis}(x))] 형태로 쓰기도 한다.) 또한 오일러 이전에 극한식으로 정의되는 값을 찾기 위한 연구 기록을 베르누이가 남긴 바 있고, 나중에 라이프니츠크리스티안 하위헌스(Christiaan Huygens)가 이 값을 [math(b)]라고 쓴 전례(정황상 베르누이의 이름에서 따온 듯하다)가 있다.

2.1. 구체적인 값

소수점 아래 1만 자리까지의 값은 다음과 같다.
자연로그의 밑 소수점 이하 10000자리 [펼치기 · 접기]
2.7182818284590452353602874713526624977572470936999595749669676277240766303535 4759457138217852516642742746639193200305992181741359662904357290033429526059563073813232862794349076323382988075319525101901157383418793070215408914993488416750 92447614606680822648001684774118537423454424371075390777449920695517027618386062613313845830007520449338265602976067371132007093287091274437470472306969772093101416928368190255151086574637721112523897844250569536967707854499699679468644549059879316368892300987931277361782154249992295763514822082698951936680331825288693 98496465105820939239829488793320362509443117301238197068416140397019837679320683 28237646480429531180232878250981945581530175671736133206981125099618188159304169 035159888851934580727386673858942287922849989208680582574927961048419844436346324496848756023362482704197862320900216099023530436994184914631409343173814364054625315209618369088870701676839642437814059271456354906130310720851038375051011574 770417189861068739696552126715468895703503540212340784981933432106817012100562788023519303322474501585390473041995777709350366041699732972508868769664035557071622684471625607988265178713419512466520103059212366771943252786753985589448969709 6409754591856956380236370162112047742722836489613422516445078182442352948636372141740238893441247963574370263755294448337998016125492278509257782562092622648326 2779333865664816277251640191059004916449982893150566047258027786318641551956532442586982946959308019152987211725563475463964479101459040905862984967912874068705 048958586717479854667757573205681288459205413340539220001137863009455606881667400169842055804033637953764520304024322566135278369511778838638744396625322498506549958862342818997077332761717839280349465014345588970719425863987727547109629537 41521115136835062752602326484728703920764310059584116612054529703023647254929666 93811513732275364509888903136020572481765851180630364428123149655070475102544650 11727211555194866850800368532281831521960037356252794495158284188294787610852639 81395599006737648292244375287184624578036192981971399147564488262603903381441823 26251509748279877799643730899703888677822713836057729788241256119071766394650706 33045279546618550966661856647097113444740160704626215680717481877844371436988218 55967095910259686200235371858874856965220005031173439207321139080329363447972735 59552773490717837934216370120500545132638354400018632399149070547977805669785335 80489669062951194324730995876552368128590413832411607226029983305353708761389396 39177957454016137223618789365260538155841587186925538606164779834025435128439612 94603529133259427949043372990857315802909586313826832914771163963370924003168945 8636060645845925126994655724839186564209752685082307544254599376917041977780085362730941710163434907696423722294352366125572508814779223151974778060569672538017 1807763603462459278778465850656050780844211529697521890874019660906651803516501792504619501366585436632712549639908549144200014574760819302212066024330096412704 89439039717719518069908699860663658323227870937650226014929101151717763594460202 32493002804018677239102880978666056511832600436885088171572386698422422010249505 5188169480322100251542649463981287367765892768816359831247788652014117411091360116499507662907794364600585194199856016264790761532103872755712699251827568798930 27617611461625493564959037980458381823233686120162437365698467037858533052758333379399075216606923805336988795651372855938834998947074161815501253970646481719467083481972144888987906765037959036696724949925452790337296361626589760394985767413973594410237443297093554779826296145914429364514286171585873397467918975712119 56187385783644758448423555581050025611492391518893099463428413936080383091662818 81150371528496705974162562823609216807515017772538740256425347087908913729172282 86115159156837252416307722544063378759310598267609442032619242853170187817729602 3541306067213604600038966109364709514141718577701418060644363681546444005331608778314317444081194942297559931401188868331483280270655383300469329011574414756313999722170380461709289457909627166226074071874997535921275608441473782330327033016823719364800217328573493594756433412994302485023573221459784328264142168487872167336701061509424345698440187331281010794512722373788612605816566805371439612788 873252737389039289050686532413806279602593038772769778379286840932536588073398845721874602100531148335132385004782716937621800490479559795929059165547050577751430817511269898518840871856402603530558373783242292418562564425502267215598027401 2617971928047139600689163828665277009752767069777036439260224372841840883251848770472638440379530166905465937461619323840363893131364327137688841026811219891275 22305625675625470172508634976536728860596675274086862740791285657699631378975303 4660616669804218267724560530660773899624218340859882071864682623215080288286359746839654358856685503773131296587975810501214916207656769950659715344763470320853 215603674828608378656803073062657633469774295634643716709397193060876963495328846833613038829431040800296873869117066666146800015121143442256023874474325250769387077775193299942137277211258843608715834835626961661980572526612206797540621062 0806498829184543953015299820925030054982570433905535701686531205264956148572492573862069174036952135337325316663454665885972866594511364413703313936721185695539 52108458407244323835586063106806964924851232632699514603596037297253198368423363 9046321367101161928217111502828016044880588023820319814930963695967358327420249882456849412738605664913525267060462344505492275811517093149218795927180019409688 66986837037302200475314338181092708030017205935530520700706072233999463990571311 5870996357773590271962850611465148375262095653467132900259943976631145459026858989791158370934193704411551219201171648805669459381311838437656206278463104903462 93950029458341164824114969758326011800731699437393506966295712410273239138741754 92307186245454322203955273529524024590380574450289224688628533654221381572213116 3288112052146489805180092024719391710555390113943316681515828843687606961102505171007392762385553386272553538830960671644662370922646809671254061869502143176211 66814009759528149390722260111268115310838731761732323526360583817315103459573653 8223534992935822836851007810884634349983518404451704270189381994243410090575376257767571118090088164183319201962623416288166521374717325477727783488774366518828 75215668571950637193656539038944936642176400312152787022236646363575550356557694 88865495002708539236171055021311474137441061344455441921013361729962856948991933 69184729478580729156088510396781959429833186480756083679551496636448965592948187 85178403877332624705194505041984774201418394773120281588684570729054405751060128 52580565947030468363445926525521370080687520095934536073162261187281739280746230 94685367823106097921599360019946237993434210687813497346959246469752506246958616 90917857397659519939299399556754271465491045686070209901260681870498417807917392 40719459963230602547079017745275131868099822847308607665368668555164677029113368 27563107223346726113705490795365834538637196235856312618387156774118738527722922 59474337378569553845624680101390572787101651296663676445187246565373040244368414 08144887329578473484900030194778880204603246608428753518483649591950828883232065 2212810419044804724794929134228495197002260131043006241071797150279343326340799596053144605323048852897291765987601666781193793237245385720960758227717848336161 3582612896226118129455927462767137794487586753657544861407611931125958512655759734573015333642630767985443385761715333462325270572005303988289499034259566232975 78248873502925916682589445689465599265845476269452878051650172067478541788798227 6806536650641910973434528878338621726156269582654478205672987756426325321594294418039943217000090542650763095588465895171709147607437136893319469090981904501290 30709956622662030318264936573369841955577696378762491885286568660760056602560544 57113372868402055744160308370523122425872234388541231794813885500756893811249353 86318635287083799845692619981794523364087429591180747453419551420351726184200845 509170845682368200897739455842679214273477560879644279202708312150156406341341617166448069815483764491573900121217041547872591998943825364950514771379399147205219529079396137621107238494290616357604596231253506068537651423115349665683715116 6042207963944666211632551577290709784731562782775987881364919512574833287937715714590910648416426783099497236744201758622694021594079244805412553604313179926967391575424192966073123937635421392306178767539587114361040894099660894714183406983629936753626215452472984642137528910798843813060955526227208375186298370667872244301957937937860721072542772890717328548743743557819665117166183308811291202452 04048682200072344035025448202834254187884653602591506445271657700044521097735585 8976226554849416217149895323834216001140629507184904277892585527430352213968356790180764060421383073087744601708426882722611771808426643336517800021719034492342 64266292261456004337383868335555343453004264818473989215627086095650629340405264 94324426144566592129122564889356965500915430642613425266847259491431423939884543 2486327461842846655985332312210466259890141712103446084271616619001257195870793217569698544013397622096749454185407118446433946990162698351607848924514058940946 39526780735457970030705116368251948770118976400282764841416058720618418529718915 40196882532893091496653457535714273184820163846448324990378860690080727093276731 27581966563941148961716832980455139729506687604740915420428429993541025829113502 24169076943166857424252250902693903481485645130306992519959043638402842926741257 34224477655841778861717372654620854982944989467873509295816526320722589923687684 57017823038096567883112289305809140572610865884845873101658151167533327674887014 82916741970151255978257270740643180860142814902414678047232759768426963393577354 29301867394397163886117642090040686633988568416810038723892144831760701166845038 87212364367043314091155733280182977988736590916659612402021778558854876176161989370794380056663364884365089144805571039765214696027662583599051987042300179465536788

3. 정의

3.1. 극한을 이용한 정의

[math(e)]가 사용되기 시작한 것은 하단의 정적분 연구가 시초라고 알려져 있지만, 교육 현장에선 이처럼 함수의 극한으로 정의하는 [math(e)]가 가장 일반적인 방법이다. 전문적인 용어로는 야코프 베르누이의 계산법이라고 한다.

함수 [math(y=(1+x)^{1/x})]을 고려하자. 자연로그의 밑은 이 함수의 [math(x \to 0)] 극한값으로 정의한다.
[math(\displaystyle \lim_{x\to 0}{(1+x)^{1/x}} =:e )]

이는 아래와 같이 그래프로도 확인할 수 있다.

파일:namu_자연로그_1.svg

[math(t=\dfrac1x)]로 치환하면 [math(x\to0+)]일 때 [math(t\to\infty)]이므로 다음 식을 얻는다.
[math(\displaystyle \lim_{t\to\infty}{\left(1+\frac1t \right)^t} = e )]

이것은 아래와 같이 그래프에서도 확인할 수 있다.

파일:namu_자연로그_3.svg

수열의 극한에서도 동일하게 성립한다. 즉, 두 수열 [math(\{(1+n)^{1/n}\})], [math(\{( 1+n^{-1} )^{n}\})]에 대해 다음이 성립한다.
[math(\displaystyle \lim_{n \to 0}{(1+n)^{1/n}}=\lim_{n \to \infty}{\left( 1+\frac{1}{n} \right)^{n}} )]

3.2. 정적분을 이용한 정의

파일:namu_자연로그_3.svg

위 그림과 같이 자연로그의 밑을 유리함수의 하나인 [math(f(x)=x^{-1})]의 그래프에서 [math(x=1)], [math(x=e)], [math(x)]축, [math(y=f(x))]로 둘러싸인 영역의 넓이가 1이 되도록 하는 상수 [math(e)]로 정의할 수도 있다. 즉,
[math(\displaystyle \int_{1}^{e} \frac{1}{x}\,{\rm d}x =1 )]
를 만족시키는 상수 [math(e)]를 자연로그의 밑으로 정의한다.

일반화로, [math(e)] 대신 임의의 양수를 넣으면 해당 양수의 자연로그값을 얻을 수 있다.[1]
[math(\displaystyle \int_{1}^{a} \frac{1}{x}\,{\rm d}x =\ln a \quad (a >0))]

3.3. 급수를 이용한 정의

[math(\displaystyle e \overset{\underset{{\sf def}}{}}{=} \sum_{n=0}^{\infty}\dfrac{1}{n!})]
[math(e^{x})]를 [math(x=0)]에서 전개한 테일러 급수[2]
[math(\displaystyle \sum_{n=0}^{\infty}\dfrac{x^{n}}{n!})]
에 [math(x=1)]을 대입한 일반항으로도 볼 수 있으며, 수렴하는 것 자체는 자명하지만, 먼저 이 급수가 정말로 수렴하는지부터 확인하자.
[math(\displaystyle \begin{matrix} S_{n} &=& 1&+&1&+&\dfrac{1}{1\cdot 2}&+&\dfrac{1}{1\cdot 2 \cdot 3}&+&\cdots&+&\dfrac{1}{1\cdot 2\cdot 3\cdot\cdots\cdot n}\\ &<& 1&+&1&+&\dfrac{1}{2}&+&\dfrac{1}{2^{2}}&+&\cdots&+&\dfrac{1}{2^{n-1}}\\&<&3\end{matrix})]
유계인 단조 증가 수열은 수렴하므로 이 급수는 수렴한다. 이제, 이 값을 [math(e)]라고 정의한 뒤, 다른 정의와 값이 일치하는지를 보자.
[math(\displaystyle \left(1+\dfrac{1}{n}\right)^{n}=T_{n})]
이라고 정의하자. 이 수열의 극한
[math(\displaystyle \lim_{n\to\infty}T_{n}=\lim_{n\to\infty}\left(1+\dfrac{1}{n}\right)^{n})]
은 위에서 극한으로 정의한 값에 따라 [math(e)]가 됨은 자명하므로, 이 수열의 극한이 여기서 정의한 [math(e)]와 같음을 보이면 충분하다. 두 값을 비교하기 위해서, [math(T_n)]의 극한은 [math(e_{T})], [math(S_n)]의 극한은 [math(e_{S})]라고 표기한다. 즉, 우리가 보여야 할 것은 [math(e_{S}=e_{T})]이다.

[math(T_{n})]을 이항정리에 따라 다시 써보자.
[math(\displaystyle \left(1+\dfrac{1}{n}\right)^{n}=\sum_{k=0}^{n}{n \choose k}\left(\dfrac{1}{n}\right)^{k})]이므로, [math(\displaystyle T_{n}=1+n\times\dfrac{1}{n}+\dfrac{n\left(n-1\right)}{2}\times\dfrac{1}{n^2}+\cdots+\dfrac{1}{n^n})]
따라서
[math(\displaystyle T_{n}=1+1+\dfrac{1}{2!}\left(1-\dfrac{1}{n}\right)+\cdots+\dfrac{1}{n!}\left(1-\dfrac{1}{n}\right)\left(1-\dfrac{2}{n}\right)\cdots\left(1-\dfrac{n-1}{n}\right))]
로 바꿔 쓸 수 있다. 또한, [math(T_{n})]과 [math(S_{n})]을 비교해보면, [math(T_{n}\leq S_{n})]임은 자명하다.[3] 그러므로
[math(\displaystyle \lim_{n\to\infty}T_{n}=e_{T}\leq\lim_{n\to\infty}S_{n}=e_{S} \quad \to \quad e_{T}\leq e_{S} \quad \cdots \, \text{①})]
가 성립한다.

[math(\forall n\geq m\in\mathbb{N})]에 대하여[4]
[math(\displaystyle T_{n}\geq 1+1+\dfrac{1}{2!}\left(1-\dfrac{1}{n}\right)+\cdots+\dfrac{1}{m!}\left(1-\dfrac{1}{n}\right)\left(1-\dfrac{2}{n}\right)\cdots\left(1-\dfrac{m-1}{n}\right))]
역시 위의 전개와 비교하면 자명하다.

이제 [math(m)]을 고정하고 [math(n \to \infty)]로 극한을 취하자.
[math(\displaystyle \lim_{n\to\infty}T_{n}=e_{T}\geq\lim_{n\to\infty}\left[1+1+\dfrac{1}{2!}\left(1-\dfrac{1}{n}\right)+\cdots+\dfrac{1}{m!}\left(1-\dfrac{1}{n}\right)\left(1-\dfrac{2}{n}\right)\cdots\left(1-\dfrac{m-1}{n}\right)\right]=S_m)]
이 된다.[5]

따라서 [math(\forall m \in \mathbb{N})]에 대하여 [math(\displaystyle S_m \leq \lim_{n\to\infty}T_n=e_{T})]이므로, 다음이 성립한다.
[math(\displaystyle e_{S}=\lim_{n\to\infty}S_n=\sup\{S_n\}\leq\lim_{n\to\infty}T_n=e_{T} \quad \to \quad e_{S}\leq e_{T} \quad \cdots \,\text{②})]
①과 ②에 의해 [math(e_{T}\leq e_{S})]이며 [math(e_{S}\leq e_{T})]이므로 실수집합상에서의 전순서관계에 의한 반대칭관계가 성립하므로 두 값은 일치한다. 즉 급수의 정의로 얻은 [math(e)]는 극한의 정의로 얻은 [math(e)]와 같음이 증명되었다.

더 나아가 1 대신 임의의 복소수를 넣으면 아래와 같이 표현 가능하다. 오일러 공식 참고.[6]
[math(\displaystyle e^{z} = \sum_{n=0}^{\infty} {{[ \Re(z) ]}^n \over n!} \left( \sum_{k=0}^\infty \dfrac{\left(-1\right)^k {[ \Im(z) ]}^{2k}}{(2k)!} + i \sum_{k=0}^\infty \dfrac{\left(-1\right)^k {[ \Im(z) ]}^{2k+1}}{(2k+1)!}\right))]

4. 용어 논란

유독 대한민국에서는 '자연상수'란 용어가 퍼져 있지만 자연상수는 표준 용어가 아니다. 공식 수학 용어를 채택하는 대한수학회에서도 [math(e)]는 자연로그의 밑으로 등재했으며, 표준국어대사전이나 기타 백과사전에서도 '자연상수'라는 말은 찾아볼 수가 없다. 보통 마땅한 용어가 없으면 해외에서 수입하는 경우가 있으나, 자연상수는 이런 연유조차 발견할 수 없다. 일단 영어권에서 natural constant란 용어는 존재하지 않으며 오히려 natural constant라고 하면 물리 상수로 알아듣는다. 또 한국 수학 교육과정의 용어에 큰 영향을 끼친 일본에서조차 [ruby(自然定数,ruby=しぜんていすう)]라고 하지 않는다. 영어권에서는 대개 단순히 the number e라고 칭하거나 '오일러의 수(Euler's number; オイラー[ruby(数,ruby=すう)], 欧拉数, número de Euler 등)'라는 명칭으로 부른다. 오일러의 이름이 붙은 수는 많으나 다른 수의 경우 Euler's constant, Euler numbers, Eulerian numbers 등으로 모두 형태를 달리하여 구분한다.[7]

자연상수는 언제 누가 어디서 처음으로 썼는지는 알려지지 않았으나 구글 검색으로 나오는 가장 오래된 기록은 1999년 10월 8일경 작성된 한 경제학 칼럼 개인 사이트로 보인다.[8] 또한 서울대학교의 기초교육 강의 교수로 지내는 정 모 교수가[9]가 '자연상수'란 용어를 독자적으로 주장하고 있다고 한다. 반대로, 같은 서울대학교 교수인 계 모 교수는[10] 이 용어 사용에 대해 회의적이라고 알려져 있다.

파일:미적분학 1+ · 2+ (김홍종 저) 머리말.jpg
어쩌다 보니 논란에 불을 지핀 격인 서울대학교 측에서도 이 일을 아는 모양이었는지, 이후 미적분학 1+ · 2+ (김홍종 저) 머리말에 '자연상수'는 공식 용어가 아니고 이 책에 한해서 그렇게 부르겠다는 문구를 수정판 머리말에 넣어 공식 용어가 아님을 확인하였다.[11]

이렇듯이 '자연상수' 사용을 따로 금지해야 한다는 법은 없으나, 객관적인 정보를 전달해야 하는 논문 저자, 교육자, 전공자 등 수학계에 있는 사람들은 이러한 불확실한 용어 사용을 가급적 피해야 할 것이다.

'네이피어 상수(Napier's Constant, ネイピア数, 纳皮尔常数, constante de Napier 등)'로 부르자는 움직임이 있지만, 이 또한 하자가 있다. 네이피어는 자연로그의 값을 처음으로 기록한 사람이지 [math(e)]를 연구한 사람이 아니며, 이 값을 계산하는 방법은 오히려 야코프 베르누이가 창안해냈다. 그러므로 굳이 이 사안에 인명을 기려내고자 한다면 네이피어가 아니라 야코프 베르누이의 이름을 담아내야 할진대, 정작 베르누이의 수([math(B_n)])가 이미 존재하는 까닭에 베르누이를 붙이기도 애매한 모양이 되었다.[12]

다른 나라에서 자연로그의 밑을 따로 지칭하려는 움직임은 거의 없다. 왜 유독 대한민국에서만 이런 현상이 발생하는지에 대한 여러 추측이 있으며, 가장 유력한 가설은 교육과정 서술상의 순서의 문제점이라는 것. 외국 교육과정에선 대한민국 교육과정과 반대로 자연로그를 먼저 서술한 뒤 그 다음 밑을 알려주는 순서를 따르는데[13] 대한민국에서는 [math(e)]를 먼저 서술하는 성격 탓에 이런 현상이 발생했다는 것. 그래서 대부분의 국내 교과서에선 '무리수 [math(e)]'라고 부르고 있다. 하지만 이 경우는 국내 교육과정 하에 승인된 용어일 뿐, 국제에서 범용화된 용어는 아니다. 해외에선 Irrational number [math(e)]라고 하는 경우가 드물다. 정작 교육과정에서 [math(e)]가 무리수임을 증명하는 과정은 서술하고 있지 않다. 차라리 교과서 정의에서 채택하고 있는 극한의 방식을 따라 '극한값 [math(e)]'로 쓰는 게 더 적절할 수도 있다. 2015 개정 교육과정 일부 교과서에선 이 점에 근거해 '극한값 [math(e)]' 혹은 '수 [math(e)]'로 바뀌었다.

5. 기타

  • [math(\lim\limits_{n \to \infty} {(1-n^{-1} )}^n = e^{-1})]이다. 고등학교 교육과정에서는 등장하지 않지만 극한에 대한 이해를 평가하는 문제로서 간간히 출제되기도 한다.
    • 이 값은 가챠처럼 카드 뽑기 게임에서도 활용되는 수이다. 확률이 [math(n^{-1})]인 카드를 [math(n)]번 뽑았다고 했을 때, 단 한 번도 안 나올 확률은 [math(e^{-1}=0.36787944117144\cdots)]가 된다. 이 식은 [math(n=100)] 정도만 돼도 충분히 [math(e^{-1})]값에 근접하므로 만약 확률이 1%인 뽑기를 100번 한다고 해도 36.79%정도의 확률로 한 번도 안 뜰 수 있다. 참값은 약 36.60%으로 거의 일치함을 알 수 있다.
    • 이 값은 수학의 '최적 멈춤' 문제의 정답이다. 비서 문제라고도 하며 문제는 다음과 같다.
      • 비서 1명을 뽑는 입사 공고를 냈더니 n 명의 입사 지원자가 몰려들었다.
      • 인사 담당자는 1명씩 면접을 보고 면접이 끝나는 즉시 지원자에게 합격 여부를 알려줘야 한다.
      • 불합격 처리된 지원자는 다시 부를 수 없다.
      • 합격자가 나오면 면접이 끝나므로, 나머지 지원자들의 면접은 취소된다.
      • 어떻게 해야 가장 뛰어난 인재를 채용할 수 있을까?
    • 정답은
      • n명×[math(e^{-1})] 까지 면접을 보고 불합격시킨다.
      • 1.불합격된 지원자들 중 가장 뛰어났던 지원자의 점수를 컷트라인 점수로 정한다.
      • 2.다음 지원자 면접을 본다.
      • 3. 면접을 본 결과 컷트라인 점수보다 높은 점수가 나오면 합격시키고 채용을 종료한다.

        • 그렇지 않다면 3을 반복한다.
  • [math(x>0)] 구간에서 [math(y = x^x)]의 최솟값은 [math(x = e^{-1})]에서, [math(y = x^{1/x})]의 최댓값은 [math(x=e)]일 때 나온다. 또한 [math(a^x)]와 그 역함수가 접할 조건은 [math(a = e^{1/e})]일 때이며 접점은 [math((e,\,e))]이다.
  • 방정식 [math(xe^x = 1)]의 실수해를 오메가 상수란 게 있다. 지수함수의 특수한 역함수인 람베르트 [math(W)] 함수에 1을 대입하면 얻을 수 있다.
  • 서로 무관한 수처럼 보이는 [math(e)]와 원주율 [math(\pi)], 허수단위 [math(i)]를 합치면 [math(e^{pi i} + 1 = 0)]이란 굉장히 깔끔한 결과가 나온다. 자세한 것은 오일러 등식 문서를 참고할 것.
  • [math(e)]를 [math(pi)]만큼 거듭 제곱한 수 [math(e^\pi)]은 겔폰트-슈나이더 정리에 해당하는 예시 중 하나로서 거론된 초월수[14]이며 증명자 겔폰트의 이름을 따 겔폰트 상수라고 한다.
    • 겔폰트 수의 제곱근을 무한 지수 탑 함수에 대입하면 순허수가 나오며 그 값은 [math(-i)]이다.
  • 완전순열의 일반항에 자연로그의 밑이 들어간다([math(!n = \operatorname{round}(n!/e))]).
  • [math(y^x = x^y)]의 그래프를 표시할 경우 양의 항등함수 그래프 하나와 곡선 그래프 하나가 나오는데,[15] 두 그래프의 교점은 [math((e, e))]이다. 마찬가지로 [math(y^{1/x} = x^{1/y})]의 그래프를 표시할 경우 항등함수 그래프 하나와 곡선 그래프 하나가 나오고, 두 그래프의 교점은 [math((1/e, 1/e))]이다.
  • 고등학교에서 [math(e)]를 배울 때는 '무리수 [math(e)]'(혹은 극한값 [math(e)] 또는 수 [math(e)])라는 명칭으로 배우게 된다. 하지만 고등학교에서는 로그함수의 미분에 대해 배우기도 전에 [math(e)]의 극한식 정의부터 배운다. 실제 미적분학을 비롯한 수학 전반에서 [math(e)]를 사용하면 표기법이 놀랍도록 간단해진다. 현재 자연로그는 고교과정에서 경제수학[16]을 제외하면 자연계열에만 편성되어 있다.
  • [math(e)]가 무리수임을 보이는 것은 쉬우나[17], 정수 다항식의 근이 될 수 없는 초월수임을 보이는 건 훨씬 어렵다.[18] 여러 [math(e^e)] 등의 수들, 심지어 [math(e+\pi)] 마저도 유리수인지 무리수인지조차 확인이 되지 않고 있다.[19] 참고로, [math(e)]가 초월수라는 것을 가장 쉽게 보이는 방법은 린데만-바이어슈트라스 정리[20]를 이용하는 방법.

초월수는 대수적 다항식의 근이 될 수 없으므로 [math(e)]가 대수적 수라 가정하자. 즉, [math(e)]는 [math(\displaystyle \sum_{k=0}^{n}a_{k}x^{k}=0)]의 근이 되므로 [math(\displaystyle \sum_{k=0}^{n}a_{k}e^{k}=0)]가 된다. 이 식의 각 항에 [math(e)]를 곱하면,

[math(\displaystyle \sum_{k=0}^{n}e\cdot a_{k}e^{k}=0 \quad \cdots \, (\ast))]

이제 [math(a_{k}\cdot e=\alpha_{k})]라고 두자. [math(k)]는 0부터 [math(n)]까지의 서로 다른 대수적 수인 정수다. 또한 [math(\displaystyle \sum_{k=0}^{n}a_{k}e^{k}=0)]가 대수적 다항식이므로 적어도 1개 이상의 [math(a_{k}\neq0)]인 [math(k)]가 존재한다. 그러면 린데만-바이어슈트라스 정리에 의하여

[math(\displaystyle \sum_{k=1}^{n}\alpha_{k}e^{k}=\sum_{k=1}^{n}e\cdot a_{k}e^{k}\neq 0)]

이어야 한다. 그런데 [math((\ast))]는 그 값이 0이어야 한다. 이는 모순이므로 [math(e)]가 대수적 수라고 가정한 전제가 틀렸다는 결론이 나온다. 따라서 귀류법에 의하여 전제가 된 [math(e)]는 대수적 수라는 것이 거짓이므로 [math(\boldsymbol{e})]는 초월수라는게 증명되었다.||
  • 원주율 [math(3.141592\cdots)]를 [math(pi)]로 간단하게 쓰는 것처럼 [math(e)] 역시 비순환소수, 즉 무리수이다. 유의미한 수학 상수 중에선 초월수로서 처음으로 증명된 수이기도 하다. 사족으로, 의미가 큰 건 아니지만, 초월수로 증명된 첫 번째 수는
    {{{#!wiki style="text-align: center"

    [math(\displaystyle \sum_{k=1}^\infty10^{-k!}=0.110001\cdots)]}}}
    으로 정의되는 리우빌 상수(Liouville's Number)로, 이 수는 초월수의 존재를 증명하기 위해 만들어진 숫자다. 발견 자체는 원주율이 훨씬 빨랐지만, 원주율이 초월수로 증명된 건 [math(e)]가 초월수로 증명된지 9년 후이다.
  • 문서에도 적혀있지만 '자연로그의 밑'과 관련해선 발음에 유의해야 한다. '자연로그의 밑으로 갖는…'과 같은 구절에서 [미츠로]라고 읽는 사람이 많으나 [미트로]라고 읽는 게 올바르다. '밑을' 역시 [미츨]이 아니라 [미틀]로 발음해야 한다. 'ㅌ'이 'ㅊ' 발음이 나는 경우에 대해서는 구개음화 문서 참고.
  • 실제로는 수지만 쓸 때는 그냥 [math(e)]라고 쓰는 것을 이용해 문과 놀리기를 하기도 한다.[21]
  • 소수점 아래 열 번째 자리까진 매우 쉽게 외울 수 있다. [math(2.7)][math(mathbf{18},)][math(mathbf{28},)][math(mathbf{18},)][math(mathbf{28},)][math(mathbf{4})][math(\cdots)] [math(9)]번째 자리까지만 본다면 유리수 같이 보이는 착각이 일어난다.[22] 사실 소수점 아래 열다섯 번째 자리까지도 그리 어렵지 않다. [math(2.7)][math(mathbf{18},)][math(mathbf{28},)][math(mathbf{18},)][math(mathbf{28},)][math(mathbf{45},)][math(mathbf{90},)][math(mathbf{45})][math(\cdots)] 45와 90이 깔끔하게 배수 관계라 기억하기 쉽다.
    • 한편 이에 따른 유명한 근삿값으론 [math(\cfrac{271801}{99990} = 2.71828\cdots)] 등이 있다.
  • 자연상수의 근사값 관련하여 선발투수가 통산 2215 이닝 동안 669 자책점을 기록할 경우 평균자책점2.7182844244..가 되고 2264와 2/3 이닝 동안 684 자책점을 기록할 경우 2.718280836..이 되어 자연상수와 근접해진다#[23].
  • [math({\rm d}x = ax\,{\rm d}y)]와 같은 형태의 미분방정식을 풀면 그 일반해는 [math(y=e^{ax}+C)]의 형태를 갖는 지수함수가 된다. 때문에 자연과학에서 지수적으로 변화하는 특성을 가진 현상(복사전달, 반감기 등)을 수식으로 기술할 때는 보통 그 식이 [math(y=e^{ax}+C)]꼴의 지수함수가 된다.
  • 한편, [math(2^2)], [math(2^e)], [math(e^2)], [math(e^e)]이 동남 방언에선 완벽히 구분되는데 표준 한국어에선 전혀 구분되지 않는다는 이야기가 인터넷에 돌았고[24], 각 방언 사용자들이 서로에게 그게 진짜냐고 묻는 떡밥이 돌기도 했다. 해당 방언 사용자는 2e와 ee를 각각 발음해 보면 감이 온다. 사실 전국적으로 그렇게 발음하는 사람이 많은데, 표준어 사용자라고 그렇지 않다는 건 없다. 그러므로 구분이 안 된다는 말은 어떻게 보면 틀린다. 자음은 묵음이고 /i/만 달랑 발음되는 숫자 2와는 달리 e 앞에 자기도 모르는 새 /ʔ/음가가 들어가기 때문. 참고로 이 발음은 엄연히 성조나 강세가 아닌 하나의 음가다. 성문음 참고.(여담이지만, 중세 국어엔 /ʔ/에 해당하는 음가가 있었다. 그게 바로 ㆆ(여린히읗). 지금도 한국어 구사자들은 이 발음을 무의식적으로 발음한다. 쉽게 말해 명치를 맞을 때 내는 "윽!"소리의 "ㅇ"의 실제 발음이다. 일(一)을 발음할 때도 나오는 발음이다.)
  • 원주율에 비해 떡밥이 적다. 모두 동그라미를 그릴 줄 알기에 원주율에 대해선 직감적이지만(애초에 원의 지름과 원의 둘레의 비를 원주율 [math(\pi)]로 정의한 것이니, 당연히 직관적으로 이해할 수 있다.) 무리수 [math(e)]는 적용된 도형이 거의 없으니... 굳이 찾아본다면 삼각함수물결 모양[25], 정규 분포의 종 모양 곡선, 현수선, 앵무조개껍데기가 그리는 나선 정도.
  • 한 연구에 따르면, 의 실제 연령을 [math(A)], 개 나이를 [math(a)]라 하면 다음이 성립한다고 한다.
    {{{#!wiki style="text-align: center"

    [math(\displaystyle A=16\ln{a}+31 )] }}}
    즉, 개 나이가 3~7세라면 사람으로 치면 49~62세에 해당한다.
  • [math(\lim\limits_{x \to \infty} {x \over x!^{1 \over x}})] 의 결과값도 [math(e)]이다.
  • 복리이자를 통해 이해하기 쉽다. 만약에 예금의 100퍼센트를 연 이자로 주는 은행이 있다고 가정해보자. 이때 예금이란 계좌에 들어 있는 잔액을 의미한다. 예금이 1원이라면 1년 후에 얼마를 받을까? 2원이다. 하지만 1년 후 2원을 한 번에 주는 것은 너무 벅차서 반년마다 이자를 지급하는 대신, 예금(계좌 잔액)의 50퍼센트만 주기로 했다. 다시 말하지만 원금의 이자가 아니라 예금의 이자다. 이는 엄연하게 다르다. 그러면 1년 후에는 총 얼마의 이자를 받게 될까? 여전히 2원이라고 대답하는 사람도 있지만, 이는 복리이자의 개념을 이해하지 못한 것이다. 전술했듯이 예금이란 계좌에 있는 잔액을 의미한다. 계좌에 내가 돈을 넣던, 은행이 이자로써 돈을 넣든지 간에, 계좌에 돈이 어떠한 방식으로든 들어 있으면, 그 계좌의 잔액으로만 이자를 계산해야 한다.

    다시 방금 전 질문으로 돌아가보자. 1원의 예금을 든 계좌에 대한 이자를, 반년으로 나눠서 50퍼센트씩 나눠서 지급한다면? 일단 올해 상반기는 이자로 0.5원을 받을 것이다. 1원의 50퍼센트는 0.5원이니까. 그러면 예금에는 총 1.5원이 생긴다. 원금 1원 더하기 0.5원 이자는 1.5원의 예금이 되니까. 그런데 앞서 한 계약이 뭐였는가? 예금을 50퍼센트씩 준다고 했다. 그러면 올해 하반기에서는 1.5원의 50퍼센트의 이자를 줘야 한다. 0.75원이다. 15나누기 2는 7.5이니까. 그러면 올해 말에는 이자를 총 2.25원을 받는다.

    하지만 매년 그렇게 하나씩 따져가며 계산하면 너무 복잡하지 않은가? 그래서 이를 수식으로 찾아보니 (1+1/n)^n이 나왔다. 그리고 n에 실수를 지속적으로 더해서 계산해보니까 값이 조금씩 증가하더니 궁극에는 2.7182818284...이 된다. 즉 소수점이 계속 늘어날 뿐 2.8 이상이 되지 않는다는 것. 마치 원주율과 같다. 어쨌든 이렇게 발견한 수를 e라고 한다.

    [math(\displaystyle e = \lim_{n \to \infty}{\left( 1+\frac{1}{n} \right)^{n}} )]

    이렇게 표현되는데, 이때 괄호 앞에 있는 "lim"과 "[math({n \to \infty} )]"이라는 표현은 뭘까? lim은 전술한 복리이자 예시에서의 '예금'을 의미하고, lim 밑에 있는 [math({n \to \infty} )]은 n에 대한 정의를 의미한다. 즉 "예금에서 n번 이자를 나눠 주면, 종전보다 조금씩 이자가 늘어난 상태일텐데, 결국에는 얼마나 줘야 할까?" 수식으로 나타내면 e = [math(\displaystyle \lim_{n \to \infty}{\left( 1+\frac{1}{n} \right)^{n}} )] 이 된다는 것이다.

    이렇게 표현되는데, 이때 괄호 앞에 있는 "lim과 n → "이라는 표현은 괄호에 곱하라는 게 아니라, n에 대한 정의(한계)를 의미한 것이다. 즉 N의 한계(Lim)를 무한이라고 가정한다고 한 것이고, 다르게 말하자면 N에 숫자를 무한하게 도입해서 수식대로 계산한다면 2.71828....이 나온다는 것이다.


[1] 그래서 자연로그는 정적분으로 정의된 함수로도 볼 수 있다.[2] 정확하게는 [math(x=0)]에서 전개하므로 매클로린 급수에 속한다.[3] [math(T_n)]의 각 항을 보면 [math(S_n)]의 각 항에 [math(\displaystyle \left(1-\dfrac{k}{n}\right)(1\leq k\leq n-1))]를 곱한 꼴임을 알 수 있는데, 이 곱해진 수가 1보다 작으므로 각 항마다 조금씩 작아져서 결과적으로 급수의 합도 작아지기 때문.[4] 임의의 자연수 [math(n)]이 주어졌을 때, [math(n)]보다 작거나 같은 자연수 [math(m)]에 대하여[5] 유한한 수인 [math(m)]에 비해 [math(n)]이 무한하게 늘어나기 때문에, [math(\displaystyle 1-\dfrac{\cdots}{n})]이 1과 다를 바 없어지기 때문에 모든 소괄호가 전부 1이 되어 생략할 수 있게 된다.[6] [math(\Re)], [math(\Im)]는 각각 해당 복소수의 실수부, 허수부를 뜻한다.[7] 그런데 중국어 같은 경우 바이두 백과에서는 진짜로 자연상수(自然常数, zìránchángshù)라고 지칭하고 있으며 실제 용례도 검색된다. 이 단어의 기원이나, 한국의 ‘자연상수’ 용어와의 관련성은 알 수 없다.[8] 개인 사이트는 사라졌으나 해당 글을 그대로 인용한 다른 글 https://daebag2001.tistory.com/9 이 있다.[9] 네이버캐스트 수학 산책에 '자연 상수 [math(e)]'를 작성한 사람이다. 참고로 네이버 관련 자료에 모두 이의 신청을 받아들여 '자연로그의 밑', '네이피어의 수', '극한값 [math(e)]'로 모두 수정된 상태인데 이 분만 자연상수라는 용어를 그대로 쓰길 원한다고 한다.[10] 김김계로 유명한 바로 그 분이다.[11] 참고로 해당 서적엔 자연로그의 밑 외에도 이 책에서만 이렇게 부르기로 약속된 독자적인 기호나 용어가 여럿 있다.[12] 엄밀히 말하자면 베르누이는 수가 아니라 수열이지만, 이미 이쪽도 입말이 되어버렸기에 혼동될 가능성이 있다. 비슷한 케이스로 피타고라스 수가 있다.(수가 아닌 집합족)[13] 일각에선 자연로그의 정의 자체보단 값([math(2.71828\cdots\cdots)])만 외우게 되는 주입식 교육을 우려해 이 방식이 채택됐다고 해석한다.[14] [math(e^\pi = (e^{i\pi})^{-i} = (-1)^{-i})]이며 [math(-1)]은 [math(0)], [math(1)]이 아닌 대수적인 수, [math(-i)]는 유리수가 아닌 대수적인 수이기 때문에 겔폰트-슈나이더 정리에 따라 [math(e^\pi)]는 초월수이다.[15] 이 방정식에서 [math(y = x)]가 아닌 자연수 x, y의 순서쌍은 [math((2, 4))], [math((4, 2))]이다.[16] 자연로그는 나오지 않고 [math(e)]에 대해서 살짝 다루는 정도다. 미적분과 달리 자연상수라는 잘못된 명칭을 그대로 쓴다.[17] 귀류법으로 [math(e = m/n)]이라 하고, [math(n!e)]를 생각해보자. [math(\displaystyle n!e = \sum_{k=0}^{\infty}\dfrac{n!}{k!})]는 정수다. 그러나 [math(n!e)]의 실제 값은 [math(\displaystyle \sum_{k=0}^{n}\dfrac{n!}{k!})]과 [math(\displaystyle \sum_{k=0}^{n}\dfrac{n!}{k!} + 1)] 사이 어딘가에서 수렴하므로(증명은 앞서 서술했다) 모순이다. 조제프 푸리에가 [math(e)]가 무리수임을 증명하기 위해 이 방법을 사용했다.[18] 그래도 정수 계수 이차방정식의 근이 될 수 없다는 것은 무리수 증명보단 어렵지만 초월수 증명에 비해 쉽게 보일 수 있다. 귀류법으로 [math(ae+b/e = c)], [math(a\neq 0)]을 만족시키는 정수해 [math(a)], [math(b)], [math(c)]가 있다고 가정한 후 [math(e)]와 [math(e^{-1})]의 테일러 전개를 잘 이용해주면 된다.[19] 참고로 [math(e\pm\pi)]와 [math(\pi e)] 둘 중 적어도 하나는 초월수라는 것 자체는 [math(e)]와 [math(\pi)]가 둘 다 초월수라는 사실을 이용하면 어마어마하게 쉽게 보일 수 있다. 대수적인 수를 모아놓은 집합은 일반적인 연산에 대해 닫혀있는 (수학적으로는 유리수 체의 대수적 폐포([math(\mathbb{Q}_{\mathbb{A}})])라고 한다.)인데, 이를 이용하면 된다. 간단히 말해서, 둘 다 대수적인 수라고 가정하면 [math(x^{2}-\left(e\pm\pi\right)x\pm\pi e=0)]이라는 이차방정식이 [math(\left(x-e\right)\left(x\mp\pi\right)=0)]으로 인수분해되므로, [math(e)]와 [math(\pi)]는 대수적인 수라는 결론이 나와야 하는데, 둘 다 초월수임은 밝혀졌기 때문에 모순이 된다. 즉, [math(e\pm\pi)]와 [math(\pi e)]가 둘 다 대수적이라고 가정한 전제가 틀렸다는 결론이 나와서 적어도 하나는 초월수라는 결론이 나오는 것.[20] 선형독립된 유한개의 대수적 수는 [math(e)]의 거듭제곱을 하더라도 선형독립이라는 정리. 즉, 모두 0이 아닌 대수적 수 [math(\alpha_{k})]에 대하여 서로 다른 대수적 수 [math(\beta_{k})]가 존재할 때 [math(\displaystyle \sum_{k=1}^{n}\alpha_{k}\beta_{k}\neq 0)]과 [math(\displaystyle \sum_{k=1}^{n}\alpha_{k}e^{\beta_{k}}\neq 0)]는 동치다 라는 정리다. 린데만-바이어슈트라스 정리의 증명에서 [math(e)]는 초월수라는 것을 이용하지 않기 때문에 가능한 방법으로, 만약 [math(e)]가 초월수라는 사실을 이용했다면 아래의 내용은 순환오류를 내포하게 되므로 증명이 될 수 없다.[21] 현행 교육과정(2015 개정)에선 무리수 [math(e)] 관련 내용이 미적분 초반 부분에 있다. 따라서 문과는 배우지 않는다. 그리고 과거에도 문과는 확률과 통계(2009)에서 (표준)정규분포의 확률밀도함수를 서술하는 부분 이외에 자연로그의 밑에 대한 내용을 가지고 상세히 배운 적은 없었다.[22] '2.친일파 이시팔 시팔 이시팔'로 외울 수 있다. 이과 고등학생이라면 적어도 [math(2.718)] 정도까진 외워두는 게 좋다. 값의 크기를 비교할 때 써먹어야 하기 때문. 이를테면 3, [math(e)], 2의 대소를 비교하라 할 때.[23] 한편 마찬가지로 원주율의 경우 통산 2034 이닝을 던져 710 자책점을 기록할 경우 3.1415929204가 되어 매우 근사해진다#.[24] 예를 들어 정승제 강사의 강의 중.[25] 삼각함수는 [math(e)]를 밑으로 하는 지수함수의 꼴로 바꿀 수 있다. 다만 이렇게 바꾸려면 오일러 공식을 활용하는 복소함수적 접근을 해야 하지만.


파일:CC-white.svg 이 문서의 내용 중 전체 또는 일부는 문서의 r606에서 가져왔습니다. 이전 역사 보러 가기
파일:CC-white.svg 이 문서의 내용 중 전체 또는 일부는 다른 문서에서 가져왔습니다.
[ 펼치기 · 접기 ]
문서의 r606 (이전 역사)
문서의 r617 (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)