최근 수정 시각 : 2024-04-21 05:04:00

SMR


파일:나무위키+유도.png  
은(는) 여기로 연결됩니다.
하드디스크의 기와식 자기 기록방식(Shingled Magnetic Recording)에 대한 내용은 하드 디스크 드라이브 문서
번 문단을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
, 에 대한 내용은 문서
번 문단을
번 문단을
부분을
부분을
참고하십시오.
1. 개요2. 상세3. 역사4. SMART 원자로

1. 개요

파일:t7QFoNs.jpg
2022년 1월 기준 IAEA가 정리한 SMR의 종류

Small Modular Reactor(소형 모듈식 증식로)의 준말. 기존 대비 작은 용량모듈식 설계를 채택한 원자로를 뜻한다.[1]

2. 상세

원자력 발전은 기존의 화력 발전을 압도하는 수준의 대출력을 낼 수 있으며, 동시에 신재생 에너지보다도 적은 수준의 탄소를 발생시키는 친환경성까지 갖추고 있었으나, 치명적인 방사선을 내뿜는 사용 후 핵연료를 대규모로 남기고, 사고가 발생하면 수습하기 까다로운데다 조기에 수습하지 못하면 체르노빌 원자력 발전소 사고, 후쿠시마 원자력 발전소 사고 같은 환경에 반영구적인 수준의 악영향을 남기는 초대형 사고로 번진다는 치명적인 단점을 가지고 있었다. 때문에 앞서 말한 사고들이 발생하고 나서[2] 대형 원전 시장이 명맥이 끊길 위기에 처하자 원전업계에서 새로운 먹거리로서 의욕적으로 추진하고 있는 기술이다. 이 기술의 당위성에 대해 업계에서는 차원이 다른 안전성과 원전의 경제성, 친환경성을 모두 챙긴 신개념 원전이라는 식으로 설명하고 있다.

먼저 안전성 측면에서, 원자력 발전은 이론적으로 출력이 증대될수록 안전성이 낮아진다. 사실 전자석식 제어봉 구동계통의 도입 이후 원자로의 출력폭주 문제는 사실상 해결되었다.[3] 원자력의 가장 골칫거리는 다 타고 남은 연료가 불안정한 상태라는 점인데, 사용후 핵연료가 여전히 방사성 열을 내뿜고 있기 때문에 원자로는 핵분열 반응을 정지시킨 후에도 연료의 열을 식혀주기 위해 펌프를 돌려 며칠 동안 열을 식혀줘야 한다. 열이 식지 않은 연료는 녹아내릴 수도 있고 물과 반응해 가연성 수소를 만들어내기도 한다. 그리고 이론적으로 이 붕괴열이 식는 속도는 원자로 출력이 높아질수록 기하급수적으로 느려진다. 따라서 반대로, 출력이 낮아질수록 붕괴열이 식는 속도는 기하급수적으로 빨라지는 것이다! 이를 이용해 원자로의 개당 출력을 낮추고, 대신 원자로를 한 발전소에 여러 개를 집어넣어 총 출력을 맞춘다는 개념으로 접근한다면 근본적인 안전성 문제를 획기적으로 잡으면서 경제성까지 잡을 수 있다는 것이 개념. 실제로 SMR 분야에서 가장 설계가 앞선 NuScale 사는 사고 발생 시 반경 내 주민들이 대피해야 하는 구역 Emergency Planning Zone(EPZ)가 700m 수준으로 사실상 발전소 바깥 주민들이 대피해야 할 필요조차 없다! 라고 홍보하고 있다.

SMR의 특징은 기존에 아예 다른 장치로 독립되어 있던 핵심 장비들이 모두 원자로 안에 통합되어 있다는 점이다. SMR은 자연대류만으로 노심을 냉각할 수 있도록 설계되므로 강제대류용 대형 펌프는 없어도 되고[4], 초대형 노심을 냉각하기 위해 사용하는 초고압(BWR은 70~80기압, PWR은 150기압)수도 필요하지 않고 비교적 낮은 압력의 냉각수를 사용할 수 있어서 대형 가압기도 필요가 없다. 원자력 발전소 중대사고 연구 시 아예 대주제로 분리되어 있을 정도로 사고 위험이 있는 외부 냉각수 배관도 당연히 생략되고, 원자로 압력용기 내부에서만 돌기 때문에 두꺼운 강철 외피가 통째로 뚫리는 골 때리는 상황이 아니고서야 냉각수 고갈 문제도 적다. 따라서 필요한 장비를 모두 포함하고도 크기를 크게 줄일 수 있도록 작은 크기와 출력을 가지도록 설계하며, 그 덕분에 도서산간지역에 쉽게 배치할 수 있고 아예 바다에 담가놓는 방식으로 냉각문제를 해결하는 컨셉까지 존재한다.

또 대형 원전의 경우 2차 냉각재가 순환하고, 또 다시 유입되는 거대한 냉각수 풀이 필요해서 해안이나 강가 부지를 요구하기 때문에 이런 지형이 없는 나라나 지역에서는 건설이 어려운데[5], SMR은 규모가 작으므로 부지 문제도 상대적으로 자유롭다. 따라서 핵확산 문제가 해결된다면 이런 나라들에 원전 세일즈를 진행하는 것이 가능해서 시장의 급격한 확대를 기대할 수 있으므로 기존 원자력 강국들이 앞다투어 뛰어들고 있다.

외부 연결관이 전선 빼고 다 생략되다보니 압력용기를 완전 밀폐형으로 제작할 수 있다. 따라서 핵연료를 중간에 인출하지 못하도록 제작할 수도 있어서 핵확산 저항성을 높일 수 있다. 모든 SMR 노형이 이렇게 연구되고 있는 것은 아니지만 원전 시장에서 높은 점수를 받을 수 있는 설계 컨셉임은 분명하다.

한국의 스마트 원자로나 NuScale 원자로, 중국의 ACP-100 등 초창기에 개발된 SMR은 개발 비용 절약과 개발시간 단축 또 사업적 위험을 줄이기 위해 이미 기술이 확립되고 오랫동안 사용해온 3세대 경수로를 출력과 크기를 대폭 축소한 경수로형이 개발되고 있지만 기술이 발전함에 따라 4세대형 설계를 도입하여 초고온 가스로나 용융염 원자로 또는 액체금속 냉각 방식을 채택한 경우도 있다.

재밌는 것은 소형 모듈식 원자로라는 이름이지만 격납용기 안에 주요 기기를 모두 넣은 탓에 실제로 격납용기 크기만 보면 기존 원전에 비해 1.5~2배 가량 크다는 점이다. 하지만 1차 계통 기기들이 격납용기 안에 들어있어서 격납 건물이나 전체 부지 크기는 일반 경수로 보다 훨씬 작다.

발전소를 놓기에는 전력 수요가 부족하고 기존 전력망을 끌어오기엔 비용이 너무 큰 도서산간지역의 전기 공급에도 대안이 될 것으로 여겨지고 있다. 현재 연구중인 컨셉으로는 매우 작은 크기와 발전 용량 덕분에 냉각수나 기타 복잡한 안전 장치 없이 대류현상 등의 자연적인 힘 만으로 냉각이 가능해 운전중에는 물론 각종 자연재해나 사고시에도 안전을 확보할 수 있으며 모듈식이라는 이름에 걸맞게 여러 공장에서 각각의 파트를 생산하고 현장에선 조립만 하는 식으로 원자로의 규격화 및 그로 인한 건설 단가 하락을 꾀하는 형태다.

상용화가 될 시 위에 언급한 도서산간지역의 전력 공급 문제는 물론 원전의 발전 비용 중 가장 큰 부분을 차지하는 건설 단가를 낮추는데 일조할 수 있다. 예를 들어 캐나다 북부의 광산지대나 알래스카 중 북부의 미군기지 등은 거주지역과의 거리가 멀어 송전설비를 갖추기엔 경제성이 좋지 않다. 그래서 기차나 트럭으로 화석연료를 운반하여 사용하는 비효율적인 방법을 사용해 왔는데, SMR을 사용한다면 이 문제가 해결될 수 있다.

이런 격오지 전기 공급 용도로는 화물 컨테이너 1-2 개에 모든 발전 설비가 들어갈 수 있을 정도로 축소하고 운용인원도 1명으로 운전할 수 있을 정도의 micro-SMR 도 제안되고 있다. 특히 아프가니스탄 전쟁에서 미군기지가 주로 도시에 멀고 도로사정도 열악한 황량한 황무지나 산악지역에 건설되어 기지에서 소모하는 유류와 전력공급을 위해 많은 유류보급차량을 운행할 수 밖에 없었는데 아프간 게릴라들이 이를 유류보급차량을 노려 급조폭발물이나 RPG-7등으로 공격해 많은 미군 사상자가 났다. 또 전세계에 흩어진 많은 미군의 기지들이 알래스카나 그린랜드 중동 대양의 섬 등 인구가 거의 없는 곳에 레이더 기지나 미사일 기지 공군기지 등을 운영하고 있어서 이런 멀고먼 지역에 전력을 공급하기위해 유류 수송 등에 많은 비용을 쓰고 있다. 그래서 미군은 이런 격오지의 에너지 공급을 위해 이런 초소형 SMR에 관심이 높다.

또 수명이 다해 교체/폐쇄 되는 석탄발전소를 환경오염이나 탄소배출 감축을 위해 석탄보일러 대신 SMR 원자로로 교체하는 용도로 SMR 을 도입하려는 경우도 있다. 다만 미국 NRC는 거의 유사한 설계의 원자로라고 하더라도 발전 용량이 다르면 별개의 다른 노형으로 취급받아 각각의 별도 허가를 받아야 하는 문제가 있다.

다만 아무리 원자력이라 기존 에너지원보다 싸다고 해도, 규모의 경제 문제는 여기도 예외가 없어서 기존 대형 원전 대비 효율성(크기 대비 출력 등)이 낮은 것은 어쩔 수 없는 문제이다. 그러나 탄소중립을 위해 신재생에너지 발전이 적극적으로 도입되면서, 기존의 에너지 구성을 발전량이 들쑥날쑥한 신재생에너지를 보완할 수 있도록 유연성 전원을 같이 두어야 하는데, 기존의 대형 원전은 대표적인 경직성 전원으로 쉽게 출력을 조절할 수 없다.[6] 원자로는 기본적으로 출력이 쉽게 조절되지 않도록 플러스-마이너스 제로에 가깝게 모든 변수들을 조정해놓았으며, 이 일종의 관성은 노심의 출력이 높을수록 강해지기 때문이다. 그러나 SMR은 출력이 낮으므로 출력 조절이 비교적 쉬우며, NuScale을 필두로 현대 SMR의 대세 설계인 모듈형 구성을 채택하면 10개 가량의 모듈을 운전하다가 출력을 60%로 낮추라는 요청이 들어오면 4개를 끄고 6개만 운전하는 등의 방식도 가능하다. 따라서 유연성 전원으로서 신재생에너지의 보조 역할을 수행할 수 있으며, 이것이 최근 에너지 업계에서 SMR을 화력발전의 대체재로 여기는 분위기의 이유이다. 반대로 대형원전의 경쟁자로 보는 업계인은 별로 없다. 한쪽은 기저전원, 한쪽은 유연성 전원으로 역할이 다르기 때문.

다만 이렇게 원자로의 출력을 자주 변경하거나 끄고켜는 것은 대형이건 SMR 이건 원자로의 안전이나 수명과 경제성에는 부정적이지만 대형 원자로는 주로 경제성과 안전성을 중시해 변동없는 기저부하 연속운전에 최적화되어 설계가 되어 있지만 SMR 은 처음 설계단계부터 경제성을 다소 희생하고 그런 부하 변동성이 큰 운전에도 안전하고 적합하도록 충분히 대비해 설계를 하는 점이 다르다.

따라서 대부분의 SMR 설계는 전력원가(LCOE) 나 용량당 건설비(overnight cost)는 일반 경수로는 물론 석유 가스등 비싼 화석연료 발전 보다 월등히 높다. 또는 그런 비싼 전력원가를 감수하고서라도 이용하는 것이 경제적으로 타당한 화석연료 공급이 힘든 격오지 지역의 전력공급 등 특수한 한정적 용도에 그칠 수 밖에 없다. 이런 비싼 건설비와 전력원가는 스마트원자로나 NuScale 등 선구적으로 개발된 SMR 등이 상용화에 실패한 가장 중요한 이유이다. 가장 상용화에 근접했던 NuScale 의 전력원가는 메가와트시(MWh) 당 89달러 가량으로 미국에서 가장 최근에 가동에 들어간 보글 원전의 전력원가의 2.5 배, 일반적 원자력 발전소의 4배 정도라고 알려졌다. 이에 NuScale은 SMR 개발사업을 완전히 포기했고 한국 울진에 6기를 건설하려던 계획도 무산되었다. 아주머니 떡도 싸야 사 먹는다.

또 하나의 문제는 국민이나 주민들의 수용성이다. SMR 은 도시 나 공장 등 수요지와 가까운 곳에 건설할 수 있고 면적도 작아 송전비용이 적고 부지확보가 쉽다는 것이 가장 큰 장점중에 하나인데 아무리 SMR 이 안전하다고 해도 화력발전소 건설도 꺼리는 지역에서 "원자력" 발전소를 도시 외곽에 흔한 분당이나 도봉구 같은 지역에 열병합발전소 처럼 가까이 지을 수 있냐는 거다. 한국의 경우 서울 경기도 등 수도권에 건설은 거의 불가능하고 잘해야 충청남도 영흥이나 태안 등 기존 화력발전소가 있는 지역이나 가능할 것이다. 그렇다고 주민들의 반발이 약해 대형 경수로 건설이 이루어지고 있는 대도시와 거리가 멀고 한적한 강원도 울진 같은 인구소외지역에 짓는다면 송전비용도 비싸지고 대형 경수로 원자로건설에 비해 딱히 장점이 없다는 것이다.

따라서 일부에서 주장하듯 SMR 을 기저전력을 값싸게 제공하는 일반 대형 경수로 원자로의 대안 또는 점차 퇴출되고 있는 석탄 화력발전소의 대안으로 보는 것은 무리이다. SMR이 현재의 원자력이나 석탄화력 같이 전원별 발전용량 비율의 20-30%을 차지하는 주요 전력원이 될 수는 없다. 태양광이나 풍력같은 변동성이 큰 발전수단의 보완재 정도로 보는 것이 타당하다.

현재 SMR은 공동연구 형태가 아닌 각 설계사가 독자 모델을 내놓고 있는 형태로 시장이 흘러가고 있다. 커다란 격납용기 안에 복잡한 형상의 기구들을 몰아넣고 용접해야하는 구조 때문에 초기 비용이 대형 원전보다 비쌀 수밖에 없는데, 지속적인 생산을 통해 노하우가 쌓이고 연구개발비를 회수하는데 성공하면 비용은 지수적으로 하락할 것이다. 때문에 업계에서는 SMR 시장은 거의 80여개에 달하는 설계안 중 먼저 상용화되고 수주를 받아 안정적으로 운영하는데 성공하는 한 자릿수의 설계만이 살아남고 나머지는 모두 도태될 것이라고 전망하고 있다.[7] 현재 추진중인 SMR 개발 프로젝트 들은 대부분 2030년대 초반-중반 건설을 목표로 하고 있어서 그 때 쯤이면 업계의 판도가 어느정도 정리될 것으로 보인다.

SMR은 수소 경제에 있어서 블루 수소를 값싸게 생산할 수 있어서 수소 경제 확대의 핵심으로 여겨진다. 다만 현재 우리나라에서는 원자력 발전 사업자의 수소 생산업 진출이 법으로 금지되어 있기 때문에 개정이 필요한 부분이다. 하지만 에너지원으로 수소이용의 가장 어려운 점은 수소 생산 원가가 아니고 생산된 수소를 수소충전소나 공장 가정등 최종수요자에게 배송하는 비용이 비싸서 인데 파이프라인으로 경제적으로 공급할 수 있을 만큼 SMR 을 수요자 가까이 건설하는 것은 회의적이다. 그 정도 거리라면 수소보다는 열병합발전소 형태로 수소보다 뉴욕시의 증기공급망 처럼 고온고압증기로 공급하는 것이 더 타당하다.

소형모듈원자로(SMR) 등 차세대 원전의 연료인 고순도저농축우라늄(HALEU)는 러시아가 독점하고 있다.# 미국과 영국도 HALEU 의 상업생산을 위한 컨소시엄에 뛰어드는 등 생산에 나서고 있다. HALEU 는 일반 경수로용 농축우라늄(LEU)의 농축도(4.5%)보다는 높지만 민간 사용이 금지된 20% 이상 보다 낮아 민간사용이 가능한 고순도 핵연료이다. HALEU 가 SMR 에 꼭 필수적인 건 아니지만 원자로 코어의 크기를 축소하면서도 용량이나 수명을 늘이고 핵폐기물의 생성을 줄이는 등 장점이 많아 LEU 보다는 HALEU 를 사용하는 것이 매우 유리하므로 SMR 개발이 활발해지면서 상업적인 HALEU 공급망 건설이 중요해지고 있다. 용융염 원자로의 현황 항목을 참고할 것.

전세계의 SMR 개발에서 매우 적극적인 중국의 SMR 전략도 참고할만 하다. 중국은 2010년초 부터 SMR 연구 개발에 국가적으로 추진해 여러 SMR 이 이미 상업발전을 시작했거나 건설 중이다. 이는 미국 유럽의 SMR 개발과 상용화 속도가 빙하처럼 느린 것과 대조적이다.

중국원자력공사(CNNC)는 ACP-100 이라는 SMR 을 건설중인데 3세대 경수로 기술에 기반한 SMR의 (해양발전선 형태가 아닌) 육상건설로는 세계최초이다. 또 CNNC 는 중국 산동성에 초고온가스로(VHTR/HTGR)인 HTR-PM (노형명칭) 원자로의 상업발전을 시작했으며 이는 4세대 원자로 기술을 통털어 상업발전으로는 세계최초이다. 테니스공 같은 핵연료를 사용하는 페블베드 방식으로 출력 100 MW 급 원자로 2기를 나란히 붙여 건설했다.

또 중국은 특히 미래의 SMR 노형으로 유망한 용융염 원자로의 연구와 개발에도 매우 적극적이다. 이미 중국 간수성에 2 MW 급의 액화 불화염 토륨 원자로의 원형로를 완공해 가동중이며 2030년 까지 100 MW 급의 상업발전을 목표로 하고 있다. 우라늄 뿐 아니라 토륨을 핵연료로 사용하는 토륨 원자로로 개발되고 있다. 그외 초대형 컨테이너 선이나 항공모함에 적용하기 위한 선박용 용융염 원자로를 개발하고 있다. 이에 대해서는 용융염 원자로 항목의 중국 현황 항목을 참고 할 것.

현재의 전망으론 SMR 산업에서는 중국과 러시아가 먼저 성공할 것으로 전망된다. 중국과 러시아는 상업적 회사가 아닌 중국 CNNC나 러시아 로사톰(Rosatom) 같은 국영기업이 개발과 사업을 주도하고 따라서 허가 등 절차가 빠르고 비용도 적고 또 비싼 개발비나 전력원가도 국영기업이라 감당할 수 있다. 무엇보다 개발 설계 허가 시공 운영 연료공급 폐기물 처리 등 원자력 발전소 건설 운영 전반적인 과정을 한 국영기업이 주도해 일괄적으로 원스탑 솔루션으로 제공하므로 수요자인 전력회사 입장에는 돈만 내고 전력만 사들이면 되니 골치아플 일이 적어 매우 매력적이다. 이는 러시아 로사톰이 VVER 경수로를 수출할 때도 적용하는 방식으로 원자력 기술이나 기반이 거의 없는 후진국도 손쉽게 원자력 발전소를 도입 운용할 수 있어서 로사톰의 강력한 수출경쟁력이 되고 있다. 한국도 참고할 만한 비지니스 모델이다.

3. 역사

  • 2021년 4월 14일, 혁신형 SMR 국회포럼이 출범하였다. 이 시점 기준 미국, 중국, 러시아 등 주요 원전 강국이 70여종의 SMR을 개발 중이다.
  • 2022년 3월, SMR도 원자로는 원자로이기에 반핵 단체들에서는 반대 기조가 있다. 탈원전을 메인 어젠다로 내건 문재인 정부 측에서도 임기 중반까지는 원자력계 연구 예산을 대폭 삭감하면서 SMR 연구도 큰 타격을 입었던 것은 사실이다. 다만 후반기에는 기후변화에 대한 세계적 트렌드 유턴과 탈원전 관련 악화되는 여론을 의식해서 SMR이 여당 측에서도 부각되는 등 연구 인프라가 좋아지고 있으며, 후임 대통령 윤석열은 기존 정부의 탈원전 정책으로 공사가 멈춘 원전을 다시 재개한다는 것과 동시에 SMR 개발 등의 관련한 원자력 공약을 발표했다. # #
  • 2022년 4월 28일, 한국원자력연구원(KAERI)과 선박해양플랜트연구소(KRISO)가 핵추진선박용 SMR 개발을 시작했다. #
  • 2022년 5월 30일, 스탠포드 대학교와 브리티시컬럼비아대에서 수행된 공동연구에 따르면 SMR은 발생되는 핵폐기물의 총량을 줄여주지 않는다. SMR은 필연적으로 중성자의 유출에 의한 핵폐기물의 발생량이 높고, 작은 크기에서 오는 비효율성을 보상하기 위해 종래에 비해 처리가 곤란한 연료와 냉각제를 사용하도록 설계되기 때문에 사용후 핵연료의 방사능 독성(radiotoxicity)이 높아서, 동일한 전력 생산 시에 발생되는 방사능 물질의 총량은 오히려 종래의 원자로의 2배 내지 30배 수준으로 증가한다는 결론이 나왔다.
  • 2022년 6월 29일, 워렌 버핏이 소유한 미국 회사 '미드 아메리칸 에너지'가 SMR 사업에 뛰어들었다.
  • 2023년 3월 15일, 영국의 롤스로이스가 2029년까지 달의 인간 거주용 소형 원자로를 만들겠다고 했다. #
  • 2023년 11월 10일, 미국에 최초로 지어질 예정이었던 SMR이 30억 달러 이상의 건설비용 폭등과 예상되는 전력 공급에 필요한 비용의 상승, 공사 기간 증가 등을 이유로 최종 무산되었다.#

4. SMART 원자로

파일:상세 내용 아이콘.svg   자세한 내용은 스마트 원자로 문서
번 문단을
부분을
참고하십시오.

[1] 여기서 소용량과 원자로와 달리 모듈식 설계라는 부분은 모듈을 어디에 적용할 것인가에 대해 설계사마다의 정의가 다르다. 대표적인 예로 롤스로이스에서 개발하고 있는 SMR의 경우 타사와 달리 증기발생기와 원자로가 분리되어 있다.[2] 특히 스리마일 섬 원자력 발전소 사고 이후 서구권에서 대규모로 번진 반원자력 운동의 여파가 컸다. TMI 사고의 경우 다른 사고들과 달리 나름 수습이 잘 끝났는데도 불구하고 이 사건으로 미국은 추가 원전 건설을 중단하겠다고 정책을 선회했고, 이후 버락 오바마 대통령이 신규 원전을 건설하겠다고 발표할 때까지 거의 50년 넘는 세월을 노후 원전만으로 버티고 있었다. 체르노빌 사고는 사실상 간신히 붙어있던 숨통을 끊었다에 가까웠던 셈.[3] 이 구조는 원자로 상단의 제어봉 구동계통이 전력을 공급받아 전자기력으로 제어봉을 잡고 있다가, 정지신호가 떨어지면 전자석에 전력 공급을 끊어 제어봉이 중력낙하를 하는 방식이다. 이 방식은 발전소 소내전원이 끊기는 스테이션 블랙아웃(SBO) 시나리오에서도 당연히 전기가 끊긴 구동계통이 제어봉을 떨구게 되기 때문에 원자로 정지에 실패할 수 없다. 최근의 원전 안전계통은 이런 식으로 건드리지 않아도 알아서 잘 되는 피동형(Passive) 설계가 대세로 자리잡았다.[4] 오해의 소지가 있어 첨언하자면 펌프가 없어도 된다는 것은 아니다. 이론적으로 자연대류에 냉각을 의존할 수 있다는 것은 유사시에 원자로가 정지되었을 때 붕괴열을 식힐 수 있도록 설계한다는 것이고, 현재 설계된 상당수의 SMR들은 정상 운전 시에는 강제대류법을 사용하여 냉각한다. 다만 한국형 스마트 원전보다도 낮은 10MWe 수준에서는 완전 자연대류 SMR도 비교적 연구되고 있다.[5] 우리나라 원전이 어디있는지 생각해보자. 전부 해안가에 있다는 것을 쉽게 알 수 있다.[6] 대표적인 친원전 국가인 프랑스의 경우 이 문제를 원자력 발전소 출력제어 프로그램에 부하추종 모드를 삽입하는 것으로 어느 정도 타협하였다. 우리나라도 이에 관해 연구해 실제로 코드는 있으나, 원전을 기저전력원으로 여기는 에너지 기본 계획의 시선과 경제성 문제로 실적용은 하지 않은 상황.[7] 특히 SMR을 연구하고 있는 설계사들이 대부분 팹리스기 때문에 종래의 중공업사들의 협력을 구하고 있는데, 이름과는 달리 커다란 형상 때문에 기존보다 큰 형상을 제조할 수 있는 대형설비의 도입이 필요하기 때문에 중공업사들 측면에서는 되도록 소수의 회사의 설계만 전담으로 제작할 것을 전제하고 투자계획을 세울 것이다. 또한 복잡한 구조와 커다란 크기 때문에 생산설비와 조립 절차를 타사와 호환되도록 표준화하기 어려워서 제작회사와 먼저 협력하지 못한 후발주자들은 제작회사의 기존 공장을 이용하기도 어렵다.


파일:CC-white.svg 이 문서의 내용 중 전체 또는 일부는 문서의 r394에서 가져왔습니다. 이전 역사 보러 가기
파일:CC-white.svg 이 문서의 내용 중 전체 또는 일부는 다른 문서에서 가져왔습니다.
[ 펼치기 · 접기 ]
문서의 r394 (이전 역사)
문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)