#!if top2 != null
, [[]][[]]
#!if top3 != null
, [[]][[]]
#!if top4 != null
, [[]][[]]
#!if top5 != null
, [[]][[]]
#!if top6 != null
, [[]][[]]
#!if 넘어옴1 != null
'''적분 공식'''{{{#!if 넘어옴2 != null
, ''''''}}}{{{#!if 넘어옴3 != null
, ''''''}}}{{{#!if 넘어옴4 != null
, ''''''}}}{{{#!if 넘어옴5 != null
, ''''''}}}{{{#!if 넘어옴6 != null
, ''''''}}}{{{#!if 넘어옴7 != null
, ''''''}}}{{{#!if 넘어옴8 != null
, ''''''}}}{{{#!if 넘어옴9 != null
, ''''''}}}{{{#!if 넘어옴10 != null
, ''''''}}}은(는) 여기로 연결됩니다.
#!if 설명 == null && 리스트 == null
{{{#!if 설명1 == null
다른 뜻에 대한 내용은 아래 문서를}}}{{{#!if 설명1 != null
{{{#!html 각종 정적분 공식}}}에 대한 내용은 [[다항함수/공식/넓이]] 문서{{{#!if (문단1 == null) == (앵커1 == null)
를}}}{{{#!if 문단1 != null & 앵커1 == null
의 [[다항함수/공식/넓이#s-|]]번 문단을}}}{{{#!if 문단1 == null & 앵커1 != null
의 [[다항함수/공식/넓이#|]] 부분을}}}}}}{{{#!if 설명2 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단2 == null) == (앵커2 == null)
를}}}{{{#!if 문단2 != null & 앵커2 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단2 == null & 앵커2 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명3 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단3 == null) == (앵커3 == null)
를}}}{{{#!if 문단3 != null & 앵커3 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단3 == null & 앵커3 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명4 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단4 == null) == (앵커4 == null)
를}}}{{{#!if 문단4 != null & 앵커4 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단4 == null & 앵커4 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명5 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단5 == null) == (앵커5 == null)
를}}}{{{#!if 문단5 != null & 앵커5 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단5 == null & 앵커5 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명6 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단6 == null) == (앵커6 == null)
를}}}{{{#!if 문단6 != null & 앵커6 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단6 == null & 앵커6 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명7 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단7 == null) == (앵커7 == null)
를}}}{{{#!if 문단7 != null & 앵커7 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단7 == null & 앵커7 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명8 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단8 == null) == (앵커8 == null)
를}}}{{{#!if 문단8 != null & 앵커8 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단8 == null & 앵커8 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명9 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단9 == null) == (앵커9 == null)
를}}}{{{#!if 문단9 != null & 앵커9 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단9 == null & 앵커9 != null
의 [[#|]] 부분을}}}}}}{{{#!if 설명10 != null
, {{{#!html }}}에 대한 내용은 [[]] 문서{{{#!if (문단10 == null) == (앵커10 == null)
를}}}{{{#!if 문단10 != null & 앵커10 == null
의 [[#s-|]]번 문단을}}}{{{#!if 문단10 == null & 앵커10 != null
의 [[#|]] 부분을}}}}}}
#!if 설명 == null
{{{#!if 리스트 != null
다른 뜻에 대한 내용은 아래 문서를}}} 참고하십시오.
#!if 리스트 != null
{{{#!if 문서명1 != null
* {{{#!if 설명1 != null
각종 정적분 공식: }}}[[다항함수/공식/넓이]] {{{#!if 문단1 != null & 앵커1 == null
문서의 [[다항함수/공식/넓이#s-|]]번 문단}}}{{{#!if 문단1 == null & 앵커1 != null
문서의 [[다항함수/공식/넓이#|]] 부분}}}}}}{{{#!if 문서명2 != null
* {{{#!if 설명2 != null
: }}}[[]] {{{#!if 문단2 != null & 앵커2 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단2 == null & 앵커2 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명3 != null
* {{{#!if 설명3 != null
: }}}[[]] {{{#!if 문단3 != null & 앵커3 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단3 == null & 앵커3 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명4 != null
* {{{#!if 설명4 != null
: }}}[[]] {{{#!if 문단4 != null & 앵커4 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단4 == null & 앵커4 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명5 != null
* {{{#!if 설명5 != null
: }}}[[]] {{{#!if 문단5 != null & 앵커5 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단5 == null & 앵커5 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명6 != null
* {{{#!if 설명6 != null
: }}}[[]] {{{#!if 문단6 != null & 앵커6 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단6 == null & 앵커6 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명7 != null
* {{{#!if 설명7 != null
: }}}[[]] {{{#!if 문단7 != null & 앵커7 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단7 == null & 앵커7 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명8 != null
* {{{#!if 설명8 != null
: }}}[[]] {{{#!if 문단8 != null & 앵커8 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단8 == null & 앵커8 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명9 != null
* {{{#!if 설명9 != null
: }}}[[]] {{{#!if 문단9 != null & 앵커9 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단9 == null & 앵커9 != null
문서의 [[#|]] 부분}}}}}}{{{#!if 문서명10 != null
* {{{#!if 설명10 != null
: }}}[[]] {{{#!if 문단10 != null & 앵커10 == null
문서의 [[#s-|]]번 문단}}}{{{#!if 문단10 == null & 앵커10 != null
문서의 [[#|]] 부분}}}}}}
1. 개요2. 기본 적분
2.1. 선형성(linearity)2.2. f'(x)/f(x) 꼴2.3. 역함수2.4. 부분적분2.5. 다항식2.6. 유리함수2.7. 무리함수2.8. 지수함수2.9. 로그함수2.10. 삼각함수2.11. 쌍곡선 함수
3. 특수 적분3.1. 절댓값 함수3.2. 역삼각함수3.3. 역쌍곡선 함수3.4. 오차함수3.5. 지수 적분 함수3.6. 로그 적분 함수3.7. 삼각 적분 함수3.8. 프레넬 적분 함수3.9. 삼각함수와 다항함수의 곱3.10. 삼각함수와 지수함수의 곱3.11. 타원 적분3.12. 디랙 델타 함수3.13. 헤비사이드 계단 함수3.14. 최대, 최소 정수 함수3.15. 브링 근호3.16. 람베르트 W 함수
4. 기타5. 관련 문서1. 개요
여러 함수의 역도함수를 수록한 문서이다. 문서에서 [math(\mathsf{const.})]는 적분상수이다.[1][2] 거의 모든 미적분 관련 수학 교과서나 수학을 쓰는 대학교 전공서적에 부록으로 달려 있으며, 하도 많이 쓰이다 보니 사용하다보면 어느새 나중에는 유명한 적분들은 그냥 외우게 된다.2. 기본 적분
2.1. 선형성(linearity)[3]
- [math(\displaystyle \int \{ \alpha f( x ) + \beta g( x ) \}\,\mathrm{d}x=\alpha \int f( x )\, \mathrm{d}x + \beta \int g( x )\, \mathrm{d}x)]
2.2. f'(x)/f(x) 꼴[4]
해당 함수의 역도함수는 치환적분을 통해 도출할 수 있다. 해당 문서의 부정적분 단락 예제 1 참고.- [math(\displaystyle \int \frac{f'( x )}{f( x )}\,\mathrm{d}x=\ln{| f( x ) |}+ \mathsf{const.})]
2.3. 역함수
함수 [math(f(x))]의 역함수 [math(f^{-1}(x))]의 역도함수는 부분적분과 역함수의 미분 공식을 쓰면 유도할 수 있다.- [math(\displaystyle \int f^{-1}(x)\,\mathrm{d}x=xf^{-1}(x)-\int f(y)\,\mathrm{d}y \quad)] (단, [math(y=f^{-1}(x))])
또는,
- [math(\displaystyle \int f^{-1}(x)\,\mathrm dx = xf^{-1}(x) - F(f^{-1}(x))+\mathsf{const.} \quad)] [math(\biggl( \biggr.)]단, [math(\dfrac{\mathrm dF}{\mathrm dx}=f(x))][math(\biggl. \biggr))]
2.4. 부분적분
- 기본꼴
[math(\displaystyle \int f(x)g'(x)\,\mathrm{d}x =f(x)g(x)-\int f'(x)g(x)\,\mathrm{d}x)] - 스틸체스꼴
[math(\displaystyle \int f(x)\,\mathrm{d}g(x) =f(x)g(x)-\int g(x)\,\mathrm{d}f(x))]
곱미분에서 유도되는 공식으로, 곧바로 적분이 되지 않을 경우 쓸 수 있는 공식이다.
2.5. 다항식
유의할 것은 [math(n)]이 상수여야 한다는 점이다. [math(y=x^x)]와 같은 함수는 초등함수를 유한 번 사용한 부정적분으로 표현할 수 없다.- [math(n \ne -1)]일 때
- [math(\displaystyle \int x^n\,\mathrm{d}x=\frac{x^{n+1}}{n+1}+ \mathsf{const.})]
- [math(n=-1)]일 때
- [math(\displaystyle \int x^{-1}\,\mathrm{d}x = \int \frac1x\,\mathrm{d}x = \ln \left| x \right|+ \mathsf{const.})]
이 두 경우를 지시함수를 이용해 하나의 식으로 나타낼 수 있다.
[math(\displaystyle \int x^n\,{\rm d}x=\dfrac{1-{\bold 1}_{\{-1\}}(n)}{{\bold 1}_{\{-1\}}(n)+n+1}x^{n+1}+{\bold 1}_{\{-1\}}(n)\ln |x|+\mathsf{const.})]
2.6. 유리함수
- [math(\displaystyle \int \frac{1}{ax+b} \, \mathrm{d}x=\frac{\ln{(ax+b)}}{a}+\sf const.)]
- [math(\displaystyle \int \frac{1}{ax^2+bx+c} \, \mathrm{d}x)]
- [math(\boldsymbol{ D > 0})]인 경우: [math(\displaystyle \frac{-1}{\sqrt{D}} \ln\left|\frac{2ax+b+\sqrt{D}}{2ax+b-\sqrt{D}}\right|+\mathsf{const.}=\frac{-2}{\sqrt{D}}{\rm artanh}\left(\frac{2ax+b}{\sqrt{D}}\right)+\mathsf{const.} )][5]
- [math(\boldsymbol{ D = 0})]인 경우: [math(\displaystyle\frac{-2}{2ax+b}+\mathsf{const.})]
- [math(\boldsymbol{ D < 0})]인 경우: [math(\displaystyle\frac{2}{\sqrt{-D}}\arctan\left(\frac{2ax+b}{\sqrt{-D}}\right)+\mathsf{const.})][6]
위에서 [math(D=b^2-4ac)]이다.
2.7. 무리함수
2.7.1. 기본
- [math(\displaystyle \int \sqrt {ax+b} \, \mathrm dx=\frac{2}{3a}(ax+b)\sqrt{ax+b}+\sf const.)]
- [math(\displaystyle \int \sqrt {x^2\pm a^2} \, \mathrm dx= \frac{\displaystyle x\sqrt {x^2\pm a^2}\pm a^2\ln(\sqrt {x^2\pm a^2}+x)}{2}+\sf const.)][7]
- [math(\displaystyle \int \sqrt{-x^2+ a^2} \, \mathrm dx=\frac12 \left[ x\sqrt{-x^2+ a^2} + a^2 \arcsin\left(\frac{x}{a}\right)\right] +\sf const.)]
- [math(\displaystyle \int \sqrt{-x^2- a^2} \, \mathrm dx=\frac12 \left[ x\sqrt{-x^2+ a^2} + a^2 \arctan\left(\frac {x}{\sqrt{-x^2- a^2}}\right)\right] +\sf const.)]
2.7.2. 역수
- [math(\displaystyle \int \frac 1{\displaystyle\sqrt {ax+b}} \, \mathrm dx=\frac{\displaystyle 2\sqrt{ax+b}}a +\sf const.)]
- [math(\displaystyle \int \frac 1{\displaystyle\sqrt {x^2\pm a^2}} \, \mathrm dx={\rm artanh}\left(x \over \displaystyle\sqrt{x^2\pm a^2}\right) +\sf const.)]
- [math(\displaystyle \int \frac 1{\displaystyle\sqrt {-x^2+ a^2}} \, \mathrm dx=\arcsin\left(\frac{x}{a}\right) +\sf const.)]
- [math(\displaystyle \int \frac 1{\displaystyle\sqrt {-x^2- a^2}} \, \mathrm dx=\arctan\left(\frac {x}{\sqrt{-x^2- a^2}}\right) +\sf const.)]
2.8. 지수함수
- [math(a > 0)]인 경우
- [math(\displaystyle \int a^x\,\mathrm{d}x=\frac{a^x}{\ln a}+ \mathsf{const.})]
- [math(a < 0)]인 경우, [math(\ln\left(-1\right)=i\pi)] 즉 복소수 [math(z = a)]에 대해, [math(-\pi<\arg z\le\pi)]일 때[8][9]
- [math(\displaystyle \int a^x\,\mathrm{d}x = \frac{a^x}{\operatorname{Log}|a| + i\pi}+ \mathsf{const.})][10]
- [math(i^x)]인 경우, 복소수 [math(z = i)]에 대해, [math(-\pi<\arg z\le\pi)]일 때
- [math(\displaystyle \int i^x\,\mathrm{d}x = \frac2\pi \sin \frac{\pi x}2 - i\frac2\pi \cos \frac{\pi x}2 + \mathsf{const.} = -i\frac2\pi \operatorname{cis}\left(\frac{\pi x}2 \right) + \mathsf{const.})][11]
- [math(\displaystyle xa^{x})]인 경우
- [math(\displaystyle\int xa^x\,\mathrm{d}x=\frac{a^x(x\ln a-1)}{\ln^2 a}+ \mathsf{const.})]
부분적분을 이용한다.
[math(\displaystyle \begin{aligned} \int xa^{x}\mathrm{d}x&=\frac{x}{\ln a}a^{x}-\int \frac{a^{x}}{\ln a}\mathrm{d}x \\ &=\frac{x}{\ln a}a^x-\frac{1}{(\ln a)^{2}}a^{x}+ \mathsf{const.} \\ &=\frac{a^{x}(x\ln a-1)}{(\ln a)^2}+ \mathsf{const.} \end{aligned} )]
}}} ||
- [math(\displaystyle x^n e^{-cx})] 꼴인 경우 (단, [math(n)]은 자연수)
- [math(\displaystyle\int x^n e^{-cx}\,\mathrm{d}x=-\frac{n!}{c^{n+1}}\sum_{j=0}^n\frac{(cx)^j}{j!}e^{-cx}+\mathsf{const.})]
2.8.1. 허수지수함수
- [math(\displaystyle\int \operatorname{cis}(z) \,{\rm d}z = -i \operatorname{cis}(z)+\mathsf{const.})]
- [math(\displaystyle\int \overline{\operatorname{cis}}(z) \,{\rm d}z = i \, \overline{\operatorname{cis}}(z)+\mathsf{const.})]
2.9. 로그함수
- 밑이 [math(\displaystyle a)]인 로그함수
- [math(\displaystyle \int \log_ax \,{\rm d}x = \frac{x\ln x-x}{\ln a} +\mathsf{const.})]
- 특히, [math(a=)] [math(e)]일 때
- [math(\displaystyle \int \ln x \,{\rm d}x = x\ln x -x +\mathsf{const.})]
- 일차함수와 합성된 로그함수
- [math(\displaystyle \int \ln(ax+b) \,{\rm d}x = \dfrac1a (ax+b)\ln(ax+b) -x +\mathsf{const.})]
[math(\displaystyle \begin{aligned}
\int \ln(ax+b) \,{\rm d}x &= x\ln(ax+b) -\int x \cdot \frac a{ax+b} \,{\rm d}x \\
&= x\ln(ax+b) -\int \frac{ax+b-b}{ax+b} \,{\rm d}x \\
&= x\ln(ax+b) -\int \biggl( 1-\frac b{ax+b} \biggr) {\rm d}x \\
&= x\ln(ax+b) -\biggl( x -\frac ba\ln(ax+b) \biggr) \!+\mathsf{const.} \\
&= \!\biggl( x +\frac ba \biggr) \!\ln(ax+b) -x +\mathsf{const.} \\
&= \dfrac1a (ax+b)\ln(ax+b) -x +\mathsf{const.}
\end{aligned} )]
\int \ln(ax+b) \,{\rm d}x &= x\ln(ax+b) -\int x \cdot \frac a{ax+b} \,{\rm d}x \\
&= x\ln(ax+b) -\int \frac{ax+b-b}{ax+b} \,{\rm d}x \\
&= x\ln(ax+b) -\int \biggl( 1-\frac b{ax+b} \biggr) {\rm d}x \\
&= x\ln(ax+b) -\biggl( x -\frac ba\ln(ax+b) \biggr) \!+\mathsf{const.} \\
&= \!\biggl( x +\frac ba \biggr) \!\ln(ax+b) -x +\mathsf{const.} \\
&= \dfrac1a (ax+b)\ln(ax+b) -x +\mathsf{const.}
\end{aligned} )]
}}}||
2.10. 삼각함수
2.10.1. 기본
- [math(\displaystyle \int \sin x\,\mathrm{d}x=-\cos x+ \mathsf{const.})]
- [math(\displaystyle \int \cos x\,\mathrm{d}x=\sin x+ \mathsf{const.})]
- [math(\displaystyle \int \sec^2x\,\mathrm{d}x=\tan x+ \mathsf{const.})]
- [math(\displaystyle \int \csc^2x\,\mathrm{d}x=-\cot x+ \mathsf{const.})]
- [math(\displaystyle \int \sec x\tan x\,\mathrm{d}x=\sec x+ \mathsf{const.})]
- [math(\displaystyle \int \csc x\cot x\,\mathrm{d}x=-\csc x+ \mathsf{const.})]
2.10.2. 사인 함수 및 코사인 함수의 거듭제곱 꼴
- [math(\displaystyle \int \sin^nx\,\mathrm{d}x=\frac{-\sin^{n-1}x\cos x}n+\frac{n-1}n\int \sin^{n-2}x\,\mathrm{d}x \quad (n\in\mathbb N,\,n\ge2))]
- [math(\displaystyle \int \cos^nx\,\mathrm{d}x=\frac{\cos^{n-1}x\sin x}n+\frac{n-1}n\int \cos^{n-2}x\,\mathrm{d}x \quad (n \in\mathbb N,\,n\ge2))]
- [math(\displaystyle \int \sin^mx\cos^nx \mathrm{d}x=\frac{\sin^{m+1}x \cos^{n-1} x}{m+n}+\frac{n-1}{m+n}\int \sin^mx \cos^{n-2}x\,\mathrm{d}x \ \quad (m\ge0,\,n\ge1,\,n,\,m\in\mathbb N))]
2.10.3. 탄젠트 함수
- [math(\displaystyle \int \tan x\,\mathrm{d}x=-\ln\left| \cos x \right|+ \mathsf{const.}=\ln\left| \sec x \right|+ \mathsf{const.})]
- [math(\displaystyle \int \tan^nx\,\mathrm{d}x=\frac{\tan^{n-1}x}{n-1}-\int \tan^{n-2}x\,\mathrm{d}x \quad (n\in\mathbb N,\,n\ge2))]
2.10.4. 코탄젠트 함수
- [math(\displaystyle \int \cot x\,\mathrm{d}x=\ln\left| \sin x \right|+ \mathsf{const.})]
- [math(\displaystyle \int \cot^nx\,\mathrm{d}x=\frac{-\cot^{n-1}x}{n-1}-\int \cot^{n-2}x\,\mathrm{d}x \quad (n\in\mathbb N,\,n\ge2))]
2.10.5. 시컨트 함수
- [math(\displaystyle \int \sec x\,\mathrm{d}x=\frac12\ln \left| \frac{\sin x+1}{\sin x-1} \right|+ \mathsf{const.}=\ln \left|\tan x+\sec x\right|+ \mathsf{const.}=\ )][math(text{igd}(x)+mathsf{const.})]
- [math(\displaystyle \int \sec^nx\,\mathrm{d}x=\frac{\sec^{n-2}x\tan x}{n-1}+\frac{n-2}{n-1}\int \sec^{n-2}x\,\mathrm{d}x \quad (n\in\mathbb N,\,n\ge2))]
2.10.6. 코시컨트 함수
- [math(\displaystyle \int \csc x\,\mathrm{d}x=-\frac12\ln\left| \frac{\cos x+1}{\cos x-1} \right|+ \mathsf{const.}=-\ln \left|\cot x+\csc x\right|+ \mathsf{const.}=\ln\left| \cot x-\csc x\right|+ \mathsf{const.})]
- [math(\displaystyle \int \csc^nx\,\mathrm{d}x=\frac{-\csc^{n-2}x\cot x}{n-1}-\frac{n-2}{n-1}\int \csc^{n-2}x\,\mathrm{d}x \quad (n\in\mathbb N,\,n\ge2))]
2.11. 쌍곡선 함수
2.11.1. 기본
- [math(\displaystyle \int \sinh x \,\mathrm{d}x=\cosh x +\mathsf{const.})]
- [math(\displaystyle \int \cosh x \,\mathrm{d}x=\sinh x +\mathsf{const.})]
- [math(\displaystyle \int \tanh x \,\mathrm{d}x=(\ln\circ\cosh)( x) +\mathsf{const.})]
2.11.2. 역수 꼴
- [math(\displaystyle \int \mathrm{csch} x \,\mathrm{d}x=(\ln \circ \tanh)\biggl(\frac{x}{2}\biggr)+\mathsf{const.})]
- [math(\displaystyle \int \mathrm{sech} x \,\mathrm{d}x=2(\arctan\circ\tanh)\biggl(\frac{x}{2}\biggr)+\mathsf{const.}=\,)][math(mathrm{gd}(x)+mathsf{const.})]
- [math(\displaystyle \int {\rm coth}\,x \,\mathrm{d}x=\ln{|\sinh(x)|} +\mathsf{const.})]
3. 특수 적분
적분의 결과로 특수함수가 나오는 식이다.3.1. 절댓값 함수
- [math(\displaystyle \int |x|\,\mathrm{d}x = \frac{1}2x^{2}\, \mathrm{sgn}\,x + \mathsf{const.})]
일반적인 일차함수 적분과 비슷해 보이지만, [math(x < 0)] 구간이 음수 방향으로 뒤집어져 있다는 차이가 존재한다. [math(\mathrm{sgn}\,x)]는 부호 함수이다.
- [math(\displaystyle \int | f(x) |\,\mathrm{d}x = (\mathrm{sgn} \circ f)(x) \int f(x)\,\mathrm{d}x)]
3.1.1. 부호 함수
- [math(\displaystyle \int \operatorname{sgn} x\, \mathrm{d}x = |x| + \mathsf{const.})]
3.1.2. 삼각함수와의 합성함수
- [math(\displaystyle \int \sin |x|\,\mathrm{d}x = \left(1- \cos x\right)\mathrm{sgn}\,x + \mathsf{const.})]
- [math(\displaystyle \int \cos |x|\,\mathrm{d}x = \sin x+ \mathsf{const.})]
- [math(\displaystyle \int \tan |x|\,\mathrm{d}x = \left(\ln \left| \sec x \right|\right) \mathrm{sgn}\,x + \mathsf{const.})]
- [math(\displaystyle \int \sec |x|\,\mathrm{d}x = \ln \left| \tan x + \sec x \right| + \mathsf{const.})]
- [math(\displaystyle \int \csc |x|\,\mathrm{d}x = \left(\ln \left| \cot x - \csc x \right|\right)\mathrm{sgn}\,x + \mathsf{const.})]
- [math(\displaystyle \int \cot |x|\,\mathrm{d}x = \left(\ln \left| \sin x \right|\right)\mathrm{sgn}\,x + \mathsf{const.})]
- [math(\displaystyle \int \left|\sin x\right|\,\mathrm{d}x = 2\left\lfloor\frac x\pi\right\rfloor -\cos\left(x - \left\lfloor\frac x\pi \right\rfloor\pi\right) + \mathsf{const.})][A]
- [math(\displaystyle \int \left|\cos x\right|\,\mathrm{d}x = 2\left\lfloor\frac x\pi + \frac12\right\rfloor + \sin\left(x - \left\lfloor\frac x\pi + \frac12 \right\rfloor\pi\right) + \mathsf{const.})][A]
- [math(\displaystyle \int \left| \tan x \right|\,\mathrm{d}x = -(\mathrm{sgn} \circ \tan)(x) \ln \left| \cos x \right| + \mathsf{const.} \quad )][math(\biggl( \biggr.)]단, [math(|x| < n \pi - \dfrac{\pi}{2})] [math(\biggl. \biggr))]
- [math(\displaystyle \int \left| \sec x \right| \, \mathrm{d}x = \mathrm{sgn}\left(\sec x\right) \ln \left|\sec x + \tan x\right| + \mathsf{const.})]
- [math(\displaystyle \int \left| \csc x \right| \, \mathrm{d}x = -\mathrm{sgn}\left(\csc x\right) \ln \left|\csc x + \cot x\right| + \mathsf{const.} = \mathrm{sgn}\left(\csc x\right) \ln \left|\csc x - \cot x\right| + \mathsf{const.})]
- [math(\displaystyle \int \left| \cot x \right| \, \mathrm{d}x = \mathrm{sgn}\left(\cot x\right) \ln \left|\sin x\right| + \mathsf{const.} \quad)][math(\biggl( \biggr.)]단, [math(|x| < n \pi - \dfrac{\pi}{2})] [math(\biggl. \biggr))]
위 식에서 [math(\lfloor \cdot \rfloor)]는 바닥함수이다.
3.2. 역삼각함수
- [math(\displaystyle \int \arcsin x\,\mathrm{d}x = x \arcsin x + \sqrt{1-x^2}+ \mathsf{const.})]
- [math(\displaystyle \int \arccos x\,\mathrm{d}x = x \arccos x - \sqrt{1-x^2}+ \mathsf{const.})]
- [math(\displaystyle \int \arctan x\,\mathrm{d}x = x \arctan x - \frac12\ln(x^2+1)+ \mathsf{const.})]
- [math(\displaystyle \int \mathrm{arcsec}\,x\,\mathrm{d}x = x\,\mathrm{arcsec}\,x - \mathrm{sgn}\,x \ln(x+\sqrt{x^2-1})+ \mathsf{const.})]
- [math(\displaystyle \int \mathrm{arccsc}\,x\,\mathrm{d}x = x\,\mathrm{arccsc}\,x + \mathrm{sgn}\,x \ln(x+\sqrt{x^2-1})+ \mathsf{const.})]
- [math(\displaystyle \int \mathrm{arccot}\,x\,\mathrm{d}x = x\,\mathrm{arccot}\,x + \frac12\ln(x^2+1)+ \mathsf{const.})]
3.3. 역쌍곡선 함수
- [math(\displaystyle \int \mathrm{arsinh}\,x\,\mathrm{d}x =\frac{1}{\sqrt{1+x^2}} +\mathsf{const.})]
- [math(\displaystyle \int \mathrm{arcosh}\,x\,\mathrm{d}x = \frac{1}{\sqrt{1+x}\sqrt{1-x}}+\mathsf{const.})]
- [math(\displaystyle \int \mathrm{artanh}\,x\,\mathrm{d}x = \frac{1}{1-x^2}+\mathsf{const.})]
- [math(\displaystyle \int \mathrm{arcsch}\,x\,\mathrm{d}x =- \frac{1}{\sqrt{1+\dfrac{1}{x^2} }+1} +\mathsf{const.})]
- [math(\displaystyle \int \mathrm{arsech}\,x\,\mathrm{d}x = -\frac{1}{x\sqrt{\dfrac{1-x}{x+1}}} (x+1) +\mathsf{const.})]
- [math(\displaystyle \int \mathrm{arcoth}\,x\,\mathrm{d}x =\frac{1}{1-x^2}+\mathsf{const.})]
3.4. 오차함수
- [math(\displaystyle \int e^{-x^2}\,\mathrm{d}x=\frac{\sqrt\pi}2\mathrm{erf}( x )+ \mathsf{const.})]
3.5. 지수 적분 함수
- [math(\displaystyle \int \frac{e^x}x\,\mathrm{d}x = \mathrm{Ei}(x) + \mathsf{const.} = -\int_{-x}^\infty\frac{e^{-t}}t\,\mathrm{d}t + \mathsf{const.})]
대표적인 초월함수 중 하나다. 해당 함수는 [math(x>0)]에서 역시 코시 주요값 문서의 예처럼 정의된다.
- [math(\displaystyle \int a^{1/x}\,\mathrm{d}x = xa^{1/x} - \mathrm{Ei}\left(\frac{\ln a}x\right) \ln a + \mathsf{const.} = x a^{1/x} + \ln a \int_{-{\ln a}/x}^\infty\frac{e^{-t}}t\,\mathrm{d}t + \mathsf{const.})]
- [math(\displaystyle \int e^x \ln x \,\mathrm{d}x = e^x \ln x - \mathrm{Ei}(x) + \mathsf{const.} = \int_{-x}^\infty\frac{e^{-t}}t\,\mathrm{d}t + e^x \ln x + \mathsf{const.})]
- [math(\displaystyle \int \operatorname{Ei}(x)\, \mathrm{d}x = x\operatorname{Ei}(x) - e^x + \sf const.)]
- [math(\displaystyle \int e^{e^x}\, \mathrm{d}x = \operatorname{Ei}(e^x) + \sf const.)]
3.6. 로그 적분 함수
- [math(\displaystyle \int \frac1{\ln x}\,\mathrm{d}x = \mathrm{li}(x) + \mathsf{const.} = \mathcal P\int_0^x \frac{\mathrm{d}t}{\ln t} + \mathsf{const.}=\lim_{a \to 0+} \left[\int_{0}^{1-a} \frac{1}{\ln t} \mathrm{d}t + \int_{1+a}^x \frac{1}{\ln t} \mathrm{d}t\right]=\int_\mu^x \frac{1}{\ln t} \mathrm{d}t +\mathsf{const.})][14]
이것도 역시 초월함수다. [math(x>1)]일 때 [math( \mathrm{li}(x)=\int_0^x (\ln{t})^{-1}\,{\rm d}t)]에 대해서는 코시 주요값 참고하라.
로그 적분 함수를 다시 적분한 함수는 지수 적분 함수와 로그함수, 로그 적분 함수로 나타내어진다.
- [math(\displaystyle \int \operatorname{li}(x)\mathrm{d}x = x\,\mathrm{li}(x) - \mathrm{Ei}(2\ln x) + \sf const.)]
3.7. 삼각 적분 함수
- [math(\displaystyle \int \frac{\sin x}x\,\mathrm{d}x = \mathrm{Si}(x) + \mathsf{const.} = \int_0^x\frac{\sin t}t\,\mathrm{d}t + \mathsf{const.})]
- [math(\displaystyle \int \frac{\cos x}x\,\mathrm{d}x = \mathrm{Ci}(x) + \mathsf{const.} = -\int_x^\infty\frac{\cos t}t\,\mathrm{d}t + \mathsf{const.})]
이외에도 삼각함수와 지수함수를 합성한 꼴, 로그함수와 삼각함수의 곱 꼴, 정의역에 역수를 취한 꼴에서도 이 초월함수가 나온다.
- [math(\displaystyle \int \sin e^x\,\mathrm{d}x = \mathrm{Si}(e^x) + \mathsf{const.})]
- [math(\displaystyle \int \cos e^x\,\mathrm{d}x = \mathrm{Ci}(e^x) + \mathsf{const.})]
- [math(\displaystyle \int \sin x \ln x\,\mathrm{d}x = \mathrm{Ci}(x) - \cos x \ln x + \mathsf{const.})]
- [math(\displaystyle \int \cos x \ln x\,\mathrm{d}x = -\mathrm{Si}(x)+ \sin x \ln x + \mathsf{const.})]
- [math(\displaystyle \int \sin(x^{-1})\,\mathrm{d}x = -\mathrm{Ci}(x^{-1}) + x \sin(x^{-1}) + \mathsf{const.})]
- [math(\displaystyle \int \cos(x^{-1})\,\mathrm{d}x = \mathrm{Si}(x^{-1}) + x \cos(x^{-1}) + \mathsf{const.})]
3.8. 프레넬 적분 함수
- [math(\displaystyle \int \sin x^2 \,\mathrm{d}x = S(x) + \mathsf{const.} )]
- [math(\displaystyle \int \cos x^2 \,\mathrm{d}x = C(x) + \mathsf{const.} )]
[math(S(x))], [math(C(x))]에 대한 정보는 프레넬 적분 함수 문서를 참조하라.
제곱이 아닌 경우는 불완전 감마 함수로 표현되는 복잡한 꼴로 정리된다.
- [math(\displaystyle \int \sin x^n \, \mathrm{d}x = - \dfrac{ix((ix^n)^{-1/p}Γ(n^{-1},ix^n)}{2n}+ \dfrac{ix(-ix^n)^{-1/p}Γ(n^{-1},-ix^n)}{2n} + \sf const.)]
- [math(\displaystyle \int \cos x^n \, \mathrm{d}x = - \dfrac{x (x^{2n})^{-1/n} ((-ix^n)^{-1/n}Γ(n^{-1},ix^n)}{2n} - \dfrac {x (x^{2n})^{-1/n}(ix^n)^{-1/n}Γ(n^{-1},-ix^n) )}{2n} + \sf const.)]
3.9. 삼각함수와 다항함수의 곱
- [math(\displaystyle \int x \sin x\,\mathrm{d}x = \sin x - x \cos x + \mathsf{const.})]
- [math(\displaystyle \int x \cos x\,\mathrm{d}x = x \sin x + \cos x + \mathsf{const.})]
- [math(\displaystyle \int x \tan x\,\mathrm{d}x = \frac i2[\mathrm{Li}_2(-e^{2ix})+x\{x+2i \ln(1+e^{2ix})\}]+ \mathsf{const.})]
- [math(\displaystyle \int x \csc x\,\mathrm{d}x = -2i\,\mathrm{Li}_2(e^{ix}) + \frac i2\mathrm{Li}_2(e^{2ix}) - 2x\,\mathrm{artanh}\,e^{ix} + \mathsf{const.})]
- [math(\displaystyle \int x \sec x\,\mathrm{d}x = i\{\mathrm{Li}_2(-ie^{ix}) - \mathrm{Li}_2(ie^{ix}) - 2x\arctan e^{ix}\} + \mathsf{const.})]
- [math(\displaystyle \int x \cot x\,\mathrm{d}x = x\ln(1-e^{2ix}) - \frac12i\{x^2+\mathrm{Li}_2(e^{2ix})\}+ \mathsf{const.})]
탄젠트, 코시컨트, 시컨트, 코탄젠트는 조금만 조작이 가해져도 적분이 다소 어려워진다.
위 식에서 [math(\mathrm{Li}_2)]는 폴리로그함수, [math(\arctan)]는 역탄젠트, [math(\mathrm{artanh})]는 역쌍곡선 탄젠트이다.
3.10. 삼각함수와 지수함수의 곱
- [math(\displaystyle \int e^x \sin x\,\mathrm{d}x = \frac{\sin x - \cos x}2 e^x + \mathsf{const.})]
- [math(\displaystyle \int e^x \cos x\,\mathrm{d}x = \frac{\sin x + \cos x}2 e^x + \mathsf{const.})]
- [math(\displaystyle \int e^x \tan x\,\mathrm{d}x = ie^x{}_2F_1\biggl(-\frac i2,~1;~1-\frac i2;~-e^{2ix}\biggr) - \frac{2 + i}5 e^{(1+2i)x}{}_2F_1\biggl(1,~1-\frac i2;~2-\frac i2;~-e^{2ix}\biggr) + \mathsf{const.})]
- [math(\displaystyle \int e^x \csc x\,\mathrm{d}x = -(1+i) e^{(1+i)x} {}_2F_1\biggl(\frac{1-i}2,~1;~\frac{3-i}2;~e^{2ix}\biggr) + \mathsf{const.})]
- [math(\displaystyle \int e^x \sec x\,\mathrm{d}x = (1-i) e^{(1+i)x} {}_2F_1\biggl(\frac{1-i}2,~1;~\frac{3-i}2;~-e^{2ix}\biggr) + \mathsf{const.})]
- [math(\displaystyle \int e^x \cot x\,\mathrm{d}x = -ie^x {}_2F_1\biggl(-\frac i2,~1;~1-\frac i2;~e^{2ix}\biggr) - \frac{2+i}5 e^{(1+2i)x} {}_2 F_1\biggl(1,~1-\frac i2;~2-\frac i2;~e^{2ix}\biggr) + \mathsf{const.})]
위 식에서 [math({}_2 F_1)]은 초기하함수이다.
3.11. 타원 적분
- [math(\displaystyle \int \frac{1}{\sqrt{1-k^{2}\sin^{2}{\theta} }}\,\mathrm{d}\theta=F(\phi,\,k)+\mathsf{const.} \qquad (0 \leq k \leq 1) )]
- [math(\displaystyle \int \sqrt{1-k^{2}\sin^{2}{\theta}}\,\mathrm{d}\theta =E(\phi,k)+\mathsf{const.} \qquad (0 \leq k \leq 1) )]
3.12. 디랙 델타 함수
- [math(\displaystyle \int \delta(x)\, \mathrm{d}x = \frac{1}{2}\mathrm{sgn}\,x+\mathsf{const.}=\mathbf{1}_{\mathbb N_0}+\sf const.)]
3.13. 헤비사이드 계단 함수
- [math(\displaystyle \int \theta (x)\, \mathrm{d} x = x\theta (x)+\mathsf{const.} = \frac{x + |x|}{2} + \mathsf{const.}=x\mathbf{1}_{[0,\infty)}+\sf const.)]
3.14. 최대, 최소 정수 함수
- [math(\displaystyle \int \lfloor x \rfloor \mathrm{d}x = \dfrac{\lfloor x-1 \rfloor(\lfloor x-1 \rfloor+1)}{2}+\lfloor x \rfloor \{ x \} + \mathsf{const.})]
- [math(\displaystyle \int \lceil x \rceil \mathrm{d}x = \dfrac{\lfloor x \rfloor(\lfloor x \rfloor+1)}{2}+ \{ x \}(\lfloor x \rfloor+1) + \mathsf{const.})]
- [math(\displaystyle \int \dfrac 1{\lfloor x \rfloor} \mathrm{d}x = H_{\lfloor x \rfloor})][math(+\dfrac 1{\lfloor x \rfloor} (\{x\} -1)+\mathsf{const.})]
- [math(\displaystyle \int \dfrac 1{\lceil x \rceil} \mathrm{d}x = H_{\lfloor x \rfloor+1})][math(+\dfrac 1{\lfloor x+1 \rfloor} (\{x+1\} -1)+\mathsf{const.})]
[math({x}=x-lfloor x rfloor)]이며 [math(H_x)]는 조화수이다.
3.15. 브링 근호
- [math(\displaystyle \int \operatorname{BR}(x)\,{\rm d}x = - \frac{[ \operatorname{BR}(x) ]^6 + 3 [ \operatorname{BR}(x) ]^2}{6} + x \operatorname{BR}(x) + x + {\sf const.})]
3.16. 람베르트 W 함수
- [math(\displaystyle \int W(x)\,{\rm d}x = x\left[ W(x)-1+\frac1{W(x)} \right]+{\sf const.})]
4. 기타
- [math(\displaystyle\int\{f(x) \pm f'(x)\}e^{ \pm x}\;{\rm d}x=\pm f(x)e^{\pm x}+\mathsf{const.}\quad)] (복부호 동순)
- [math(\displaystyle\int{}f(ax+b)\;{\rm d}x=\frac{1}{a}F(ax+b)+\mathsf{const.})]
- [math(\displaystyle\int{}f'(x) \cdot e^{f(x)}\;{\rm d}x=e^{f(x)}+\mathsf{const.})]
5. 관련 문서
[1] 이런 표기를 쓰는 이유는 아래의 프레넬 코사인 함수의 이름자가 적분상수로 자주 쓰이는 표기인 [math(C)]와 겹치기 때문.[2] 어차피 역도함수인 걸 아니까 일부 서적에서는 상수는 빼고 적어 놓는 경우도 있다.[3] 어떤 연산자가 분배 법칙 및 상수배 성질을 만족시키는 경우 선형성이 있다고 하며, 이런 형태의 결합을 선형결합(linear combination)이라고 한다.[4] 탄젠트 함수, 코탄젠트 함수, 쌍곡 탄젠트 함수, 쌍곡 코탄젠트 함수의 적분이 여기서 유도된다.[5] [math(\rm artanh)] 함수의 정의역은 [math((-1,1))]이므로, 일반적인 경우에는 자연로그가 포함된 전자의 공식을 써야 한다. 혹은 [math(\mathbb R \setminus [-1,\,1] )] 부분을 [math(\rm arcoth)]로 해서 조각적으로 정의하는 방법도 있다.[6] 처음의 [math(D>0)]인 경우 공식과 이 공식이 같은 공식이라 생각하면, [math(i\arctan(x)={\rm artanh}(ix))]를 얻을 수 있고, 여기서 [math(\tanh(i\theta)=i\tan\theta)]를 유도할 수 있다. [math(\tanh)] 함수의 정의를 활용하면 여기서 오일러 공식까지 얻어낼 수 있다. 요한 베르누이가 1702년경 이 방법으로 해당 공식을 얻을 뻔했으나, 복소 로그에 대한 이해 부족으로 공식 완성까지는 못 한 것으로 여겨진다.[7] [math(+)]인 경우 한정으로 [math(\displaystyle \int \sqrt{x^2+ a^2} \, \mathrm dx=\frac12 \left[ x\sqrt{x^2+ a^2} + a^2\,{\rm arsinh}\left(\frac{x}{a}\right)\right] +\sf const.)]로도 계산 가능하다.[8] 복소로그함수의 성질로부터 유도된 식인데, 복소수 [math(z)]의 편각 [math(\arg z)]가 다가함수, 그러니까 엄밀히는 [math(e^{\left(\pi+2n\pi\right)i}=-1)]이기 때문에 이렇게 정의하지 않으면 부정적분이 하나로 정의되지 않는다.[9] 이 편각의 범위를 주요값(principal value)이라고 하고 이렇게 정의된 복소로그함수는 [math(\mathrm{Log})]로, 편각은 [math(\text{Arg})]로 나타낸다. [math(\mathrm{Ln})]이 아닌 이유는 복소로그함수 참조.[10] 그런데 [math(a <0)]일 때 [math(\operatorname{Log} a = \ln|a| + i\pi)]라서 [math(a>0)]일 때의 식과 다를 게 없다. 사실 [math(\operatorname {Log})] 자체를 그렇게 정의하기도 했고.[11] 이 역시 [math(\operatorname{Log}i = \dfrac \pi2)]와 [math(e^\frac {i\pi}2=i)]에 의하면 [math( -i\dfrac2\pi \operatorname{cis}\left(\dfrac{\pi x}2 \right)=\dfrac {i^x}{\operatorname{Log}i})]이다.[A] 단순히 부호 함수를 이용해서 나타낼 수도 있겠으나, 이럴 경우 [math(x=n\pi \; (n \in \mathbb{N}))]에서 미분이 불가능하다는 문제가 생긴다.[A] [14] [math(\mu)]는 [math(x)]절편인 라마누잔-졸트너 상수로 [math(-\Gamma(0,\ln 2)-i\pi)]이다.