1. 개요
전류(電流, electric current)는 전하의 흐름으로, 단위 시간동안 어떤 단면적을 통과한 전하의 양을 나타내는 개념이다. 세기의 단위는 [math(\rm A)](암페어, ampere), 차원은 [math(\sf I)][1]이다.과거에 전류 [math(\rm1\,A)]는 이상적이고, 매우 긴 두 도선이 [math(\rm1\,m)] 떨어져있을 때, [math(2\times10^{-7}{\rm\,N})]의 인력 혹은 척력을 발생시키는 전류로 정의되었으나, 2018년 국제도량총회에서 전류의 정의가 아래와 같이 바뀌었다.
전자의 기본 전하량이 [math(\bm{e=1.602\,176\,634\,8 \times 10^{-19}\,\bf A{\bm\cdot}s})]가 되도록 하는 전류 |
2. 전류의 수학적 정의
전도 매질은 전하가 자유롭게 움직일 수 있는 매질이다. 또한, 전도 매질은 많은 수의 유동 전하가 있는 매질이다. 이 유동 전하에서는 전자, 양공, 양이온 등이 포함된다. 이제부터 이러한 매질 내에서 전하 [math(Q)]를 운반하는 매질 내의 특별한 입자에 대해서만 생각해보자. 이들의 평균 유동 속도[2]는 [math(\bf\langle v\rangle)]라 가정하자. 거시적으로는 이들이 연속적이라 가정한다. 이러한 전하가 [math({\rm d}t)]라는 시간 간격 동안 [math({\rm d}\bf a)]의 미소 면적을 통과한다고 가정해보자. 이때, 이러한 전자의 농도가 [math(n)]이라 가정하면, 이러한 면적을 지나간 전하의 수[3]는 농도와 부피의 곱으로 구할 수 있다. 즉,[math({\rm d}Q = qn \langle{\bf v}\rangle\bm\cdot{\rm d}{\bf a}{\rm\,d}t)] |
[math(\dfrac{{\rm d}Q}{{\rm d}t} = {\rm d}I = qn \langle{\bf v}\rangle\bm\cdot{\rm d}{\bf a})] |
[math({\rm d}I = \rho \langle{\bf v}\rangle\bm\cdot{\rm d}{\bf a})] |
[math(\displaystyle {\rm d}I = {\left[ \sum_i\rho_i\langle{\bf v}_i\rangle \right]}\bm\cdot{\rm d}{\bf a})] |
[math(\displaystyle {\bf J} \equiv \sum_i\rho_i\langle{\bf v}_i\rangle)] |
[math(\displaystyle I=\iint_S {\bf J}\bm\cdot{\rm d}{\bf a})] |
3. 전자기학의 연속 방정식
이제부터 전하의 국소 보존에 대해 논의할 것이다. 전하는 보존되어야 하므로 임의의 부피 영역 [math(V)]에서 유출된 전하의 양은 부피 영역을 둘러싸는 폐곡면 [math(S)]을 통과하는 전하와 같아야 할 것이다. 따라서 폐곡면 [math(S)]를 통과하는 전하량을 아래와 같이 구할 수 있다.[math(\displaystyle \oiint_S {\bf J}\bm\cdot{\rm d}{\bf a})] |
[math(\displaystyle \oiint_S {\bf J}\bm\cdot{\rm d}{\bf a} = -\frac{{\rm d}q}{{\rm d}t})] |
[math(\displaystyle \oiint_S {\bf J}\bm\cdot{\rm d}{\bf a} = -\frac{\rm d}{{\rm d}t}\iiint_V \rho{\rm\,d}V = -\iiint_V \frac{\partial \rho}{\partial t}{\rm\,d}V)] |
[math(\displaystyle \iiint_V (\bm{\nabla\cdot\bf J}){\rm\,d}V = -\iiint_V \frac{\partial \rho}{\partial t}{\rm\,d}V)] |
[math(\bm{\nabla\cdot\bf J} + \dfrac{\partial \rho}{\partial t} = 0{\rm\,A/m^3})] |
만약, 다루는 매질 영역 내에 유전체가 있다면, 전류 밀도 [math(\bf J)]는 외부 전류 밀도 [math({\bf J}_f)]와 구속된 전하에 의한 전류 밀도 [math({\bf J}_p)]의 합으로 쓸 수 있을 것이다. 또한, 전하 밀도 [math(\rho)] 또한, 외부 전하 밀도 [math(\rho_f)]와 구속된 전하에 의한 전류 밀도 [math(\rho_p)]의 합으로 쓸 수 있을 것이다. 따라서 위에서 구해진 연속 방정식을 이용하면,
[math(\bm\nabla\bm\cdot({\bf J}_f+{\bf J}_p)+\dfrac\partial{\partial t}(\rho_f+\rho_p) = 0{\rm\,A/m^3})] |
[math({\bf J}_p = \dfrac{\partial\bf P}{\partial t})] |
[math(\rho_{p} = -\bm{\nabla\cdot\bf P})] |
[math(\begin{aligned} \bm\nabla\bm\cdot{\bf J}_f+\frac{\partial \rho_f}{\partial t} &= 0{\rm\,A/m^3} \\ \bm\nabla\bm\cdot{\bf J}_p+\frac{\partial \rho_p}{\partial t} &= 0{\rm\,A/m^3} \end{aligned})] |
3.1. 정상 전류
정상 전류(Steady current)는 위의 연속 방정식에 대해 다음을 만족하는 전류이다.[math(\dfrac{\partial \rho}{\partial t} = 0{\rm\,A/m^3})] |
[math(\bm{\nabla\cdot\bf J} = 0{\rm\,A/m^3})] |
4. 옴의 법칙
대부분의 전도체에서 매질의 두 경계면의 전위차와 이들 사이에 흐르는 전류 간에는 간단한 선형 관계가 있고, 그것을 옴의 법칙(Ohm's law)[6]이라 한다. 옴의 법칙은 다음과 같다.[math({\bf J} = \sigma_c{\bf E})] |
만약, 전도체가 옴의 법칙을 만족하고, 전류가 상수인 단면적 [math(A)]에 흐르고, 전도체의 길이 [math(L)]이 상수라면, 매질 내에서 [math(\bf J)]와 [math(\bf E)]는 상수가 되고,
[math(I=JA)] |
[math(I = \dfrac{\sigma_cA}LV)] |
[math(R \equiv \dfrac L{\sigma_cA})] |
[math(R = \rho \dfrac LA)] |
[math(V=IR)] |
4.1. 상세
그림과 같은 단면적이 [math(A)]인 직육면체 저항기(resistor)가 있다. 단면 [math(A)]에 위치한 저항기 내 자유전자가 전압 [math(V)]를 받아 평균속도 [math(v_d)]로 수렴하며 그림과 같은 방향 즉, [math((+))] 전극 방향으로 이동했다고 하자.자유전자의 평균속도는 회로에 걸린 전압에 비례하고 저항기의 길이에 반비례하게 되므로
[math(v_d \propto \dfrac VL)] |
[math(v_d = \mu_n\dfrac VL)] |
저항기에 흐르는 전류는 전하량을 [math(q)], 저항기 내 단위부피당 전자의 수, 즉 자유전자밀도(free electron density)를 [math(n_0)]라 할 때, 전류 [math(I)]는 단위시간당 전하가 이동한 총량이므로 자유전자가 이동한 부분의 부피 [math(qAv_d)]와 자유전자의 밀도를 곱하면 얻는다. 즉,
[math(I = qAv_dn_0)] |
[math(I = qAn_0\mu_n\dfrac VL)] |
[math(I = qn_0\mu_n\dfrac AL{\cdot}V)] |
전기 전도율 [math(G=1/R)]에 대하여 [math(G = qn_0\mu_n A/L)]이라 두면,
[math(I = GV = \dfrac VR)] |
특히, [math(qn_0\mu_n)] 를 도전율(conductivity) [math(\sigma)]라 하고 [math(\sigma^{-1} = \rho)]를 비저항 또는 저항률(resistivity)이라 하며, 여기서 저항 [math(R)]와 전기 전도율 [math(G)]를
[math(\begin{aligned} R &= \frac1{\sigma}\frac LA \\ G &= \sigma\frac AL \end{aligned})] |
참고로 여기서 유도된 공식은 가장 간단한 형태의 저항체를 가정하여 유도된 것이고 향후 반도체 공학 등에서 더 자세하게 다루게 된다. 위에서 전자의 평균속도가 [math(v_d)]로 수렴한다고 표현한 것은 전자가 전압을 받아 속도가 증가하며 일정 속도에 도달한 이후 원자핵과의 상호작용으로 에너지를 방출하여 속도를 잃었다가 다시 전압에 의해 에너지를 얻어 움직이는 과정을 반복하기 때문이다.[9] 이는 곧 저항체 내에서의 에너지 방출과 관련되게 되고 궁극적으로 실리콘 반도체가 대세가 된 이유로까지 이어진다.
4.2. 정전기적 평형 상태의 도체
전기장 문서에서 정전기적 평형 상태의 도체에는 내부에 전하가 존재할 수 없다고 했다. 따라서 이 문단에서는 도체 내부의 전하가 중성화 되고, 도체 표면으로 나오는데까지 걸리는 시간을 논의하고자 한다. 도체가 옴의 법칙을 만족하고, 전기 전도도가 상수라면, [math({\bf J} = \sigma_c{\bf E})]를 만족할 것이다. 따라서 이때의 연속 방정식을 쓰면,[math(\sigma_c\bm{\nabla\cdot\bf E} = -\dfrac{\partial \rho}{\partial t})] |
[math(\bm{\nabla\cdot\bf E} = \dfrac\rho{\varepsilon_0})] |
[math(\dfrac{\partial \rho}{\partial t} + \dfrac{\sigma_c}{\varepsilon_0} \rho = 0{\rm\,A/m^3})] |
[math(\rho(t)=\rho(0{\rm\,s})\exp{\left(-\dfrac{\sigma_c}{\varepsilon_0} t \right)})] |
4.3. 예외
바일 반금속을 이용한 실험에서 옴의 법칙이 적용되지 않는 사례가 발견되어, 2017년 8월 14일에 네이처 머티리얼스(Nature materials)에 실렸다.그렇지만 이건 제한적인 것으로, 이 사례에서 옴의 법칙이 적용 안되는 이유가 바로 저항이 일반적 금속에서 발생하는 값보다 상당히 낮게 발생하는 게 밝혀졌기 때문이다. 고비용과 아직 일반적인 온도에서 실현하기 힘든 초전도현상까지는 아니더라도 상당히 낮은 값의 저항값을 가진 금속으로 만들 가능성이 생겼고, 적용이 된다면 상당한 효율 상승을 기대할 수 있다. 당장은 아니더라도 저항으로 인해 효율이 낮아지는 전기 전자분야에서는 기대 할 만한 내용이다.
5. 정상 전류와 경계치 문제
이제 매질 간의 정상 전류가 흐를 때의 경계치 조건에 대해서 논의해보도록 할 것이다.5.1. 전류 밀도가 따르는 방정식
매질 내에서 전류가 흐르든, 흐르지 않든, 매질 내 정전기장에 대해 다음이 성립함을 알고 있다.[math(\begin{aligned} \bm{\nabla\cdot\bf E} &= \dfrac{\rho}{\varepsilon_0} \\ \bm{\nabla\times\bf E} &= 0{\rm\,V/m^2} \end{aligned})] |
[math(\bm\nabla\bm\times\dfrac{\bf J}{\sigma_c} = 0{\rm\,V/m^2})] |
[math(\dfrac1{\sigma_c} \bm{\nabla\cdot\bf J} = 0{\rm\,V/m^2})] |
[math(\begin{aligned} \bm{\nabla\cdot\bf J} = 0{\rm\,A/m^3} \\ \bm{\nabla\times\bf J} = 0{\rm\,A/m^3} \end{aligned})] |
[math(\begin{aligned} \oiint_S {\bf J}\bm\cdot{\rm d}{\bf a} &= 0{\rm\,A} \\ \oint_C {\bf J\bm\cdot{\rm d}l} &= 0{\rm\,A/m} \end{aligned})] |
5.2. 경계 조건(boundary condition)
윗 문단을 통해
[math(\displaystyle \oiint_S {\bf J\bm\cdot{\rm d}a} = 0{\rm\,A})] |
[math({\bf J}_1\bm\cdot{\bf\hat n} = {\bf J}_2\bm\cdot{\bf\hat n})] |
[math({\bf E}_1\bm\cdot{\bf\hat t} = {\bf E}_2\bm\cdot{\bf\hat t})] |
[math(\dfrac{{\bf J}_1 \bm\cdot{\bf\hat t}}{\sigma_1} = \dfrac{{\bf J}_2\bm\cdot{\bf\hat t}}{\sigma_2})] |
[math({\bf J}_2\bm\cdot{\bf\hat t} \rightarrow 0{\rm\,A/m^2})] |
[math({\bf E}_2\bm\cdot{\bf\hat t} \rightarrow 0{\rm\,V/m})] |
이상을 요약하면, 전류 밀도가 서로 다른 옴의 법칙을 만족하는 매질의 경계면을 가로지를 때의 경계 조건은
[math(\begin{aligned}{\bf J}_1\bm\cdot{\bf\hat n} &= {\bf J}_2\bm\cdot{\bf\hat n} \\ \frac{{\bf J}_1\bm\cdot{\bf\hat t}}{\sigma_1} &= \frac{{\bf J}_2\bm\cdot{\bf\hat t}}{\sigma_2} \end{aligned})] |
5.3. 경계치 문제
위에서 경계 조건을 결정했기 때문에 이제 경계치 문제를 논의할 수 있다. 우선 정상 전류 상태를 분석하고 있기 때문에 다음이 성립한다고 했다.[math(\bm{\nabla\cdot\bf J} = 0{\rm\,A/m^3})] |
[math({\bf J} = \sigma_c({\bf E}+{\bf E}_e))] |
보존적인 전기장에 대해
[math({\bf E} = -\bm{\nabla\Phi})] |
[math(\bm{\nabla\cdot\bf J} = \bm\nabla\bm\cdot{\left[\sigma_c (-\bm{\nabla\Phi}+{\bf E}_e)\right]} = 0{\rm\,A/m^3})] |
[math(\sigma_c\nabla^2\bm\Phi+\bm\nabla\sigma_c\bm\cdot\bm{\nabla\Phi} = \bm\nabla\bm\cdot (\sigma_c{\bf E}_e))] |
[math(\sigma_c\nabla^2 \bm\Phi = \bm\nabla\bm\cdot(\sigma_c{\bf E}_e) )] |
우선적으로 비보존적 전기장([math({\bf E}_e = 0{\rm\,V/m})])이 없는 경우를 고찰해보도록 하자. 이 경우에 위 방정식은
[math(\nabla^2\bm\Phi = 0{\rm\,V/m^2})] |
[math(\begin{aligned} {\bf J}_1 \bm\cdot{\bf\hat n} &= {\bf J}_2\bm\cdot{\bf\hat n} \\ \frac{{\bf J}_1\bm\cdot\bf\hat t}{\sigma_1} &= \frac{{\bf J}_2\bm\cdot\bf\hat t}{\sigma_2} \end{aligned})] |
[math(\bm\Phi_1 = \bm\Phi_2)] |
[math(\sigma_1 \dfrac{\partial\bm\Phi_1}{\partial n} = \sigma_2 \dfrac{\partial\bm\Phi_2}{\partial n})] |
만약 비보존적 전기장이 존재한다면, [math(\sigma_c{\bf E}_e \equiv {\bf J}_e)]로 쓸 수 있으므로 퍼텐셜에 대한 경계 조건은
[math(\begin{aligned} \bm\Phi_1 &= \bm\Phi_2 \\ \sigma_1 \frac{\partial\bm\Phi_1}{\partial n} = \sigma_2 \frac{\partial\bm\Phi_2}{\partial n} &= -({\bf J}_{e2}-{\bf J}_{e1})\bm\cdot{\bf\hat n} \end{aligned})] |
결국 위 과정으로 부터 정상 전류에 대한 경계치 문제와 정전기학의 경계치 문제는 공통성이 있음을 알 수 있다. 따라서 정상 전류에 대한 경계치 문제는 정전기학의 경계치 문제에서
[math(\begin{aligned} \varepsilon_i &\rightarrow \sigma_i \\ {\bf D}_i \rightarrow {\bf J}_i &= -\sigma_i\bm{\nabla\Phi}_i \end{aligned})] |
[math(\begin{aligned} \frac\rho\varepsilon &\rightarrow -\bm{\nabla\cdot\bf J}_e \\ \frac\sigma\varepsilon &\rightarrow -({\bf J}_{e2}-{\bf J}_{e1}) \bm\cdot\bf\hat n \end{aligned})] |
5.4. 관련 예제
자세한 내용은 전류/정상 전류와 경계치 문제/관련 예제 문서 참고하십시오.6. 줄 발열과 일률
이제 어떤 매질 내의 미소 전하 운반체 [math({\rm d}q)]에 가해지는 전기장이 [math(\bf E)]라 가정하고, 이 전기장 때문에 운반체가 [math({\rm d}\bf l)]만큼 움직였다고 가정하자. 또한, [math({\rm d}q = \rho{\rm\,d}V)]형태로 쓸 수 있으므로 전기장에 의한 일을[math({\rm d}W = (\rho{\rm\,d}V){\bf E\bm\cdot{\rm d}l})] |
[math({\rm d}{\bf l} = \langle{\bf v}\rangle{\rm\,d}t)] |
[math({\rm d}W = \rho {\bf\langle v\rangle\bm\cdot E}{\rm\,d}V{\rm\,d}t)] |
[math({\rm d}W = {\bf J\bm\cdot E}{\rm\,d}V{\rm\,d}t)] |
[math(\dfrac{{\rm d}W}{{\rm d}t} = {\bf J\bm\cdot E}{\rm\,d}V)] |
[math(\displaystyle P = \iiint_V {\bf J\bm\cdot E}{\rm\,d}V)] |
[math(\displaystyle P = \iiint_V \sigma_c E^2{\rm\,d}V)] |
[math(\dfrac{{\rm d}P}{{\rm d}V} = {\bf J\bm\cdot E})] |
서로 반대의 면 [math(\rm A)], [math(\rm B)]가 각각 등전위 영역이 되는 경우를 고려해보자. 만약 미소 전하량 [math({\rm d}q)]가 전기장 [math(\bf E)]에 의해 미소 시간 [math({\rm d}t)]만큼 이동했다면,
[math(\displaystyle {\rm d}W = {\rm d}q\int_{\rm A}^{\rm B} {\bf E\bm\cdot{\rm d}r})] |
[math(\displaystyle \int_{\rm A}^{\rm B} {\bf E\bm\cdot{\rm d}r} \equiv V)] |
[math({\rm d}W = \dfrac{{\rm d}W}{{\rm d}t}{\rm\,d}t = IV{\rm\,d}t)] |
[math(P=IV)] |
[math(P = I^2R)] |
7. 전류와 관련된 여담
7.1. 전자와 전류
초, 중, 고등학교에서 전기파트를 배울 때 도선에서 전류의 방향이 전자의 이동 방향과 반대인 게 신기하게 느껴졌을 텐데, 이것은 별 건 아니고 금속에서 전자가 전류를 흐르게 한다는 사실이 전류를 정의한 것보다 훨씬 뒤에 발견되었기 때문이다. 원래 전기는 양극에서 음극으로 흐른다고 정의했으나[10] 후에 전자가 음극에서 양극으로 이동한다는게 밝혀졌다.P형 반도체에선 본래 있던 전자가 이동해 버리면 그 구멍을 채우기 위해 옆에있던 전자가 그 자리를 채우고…해서 전체적으로 보았을 때 양공[11]이 전류를 흐르게 하는 것처럼 보인다.
위의 말을 간단히 설명하자면 공이 한줄로 가득찬 관을 생각해 보자, 왼쪽에서 공을 하나 더 밀어넣으면 동시에 반대편에서 공이 나올 것이다.
이러한 과정들이 연쇄적으로 이루어지기 때문에 스위치를 켜자마자 전기를 사용할 수 있는 것이다. 만일 전자가 전원으로부터 직접 움직여서 전기가 통하는 식이라면 스위치 넣고도 발전소에서 집까지 전기가 오는데 한참 기다려야 한다. 실제로 전자가 도선을 따라 움직이는 평균속도는 그렇게 빠르지 않다. 지름 [math(\rm1\,mm)]인 구리도선에 [math(\rm3\,A)]의 전류가 흐른다면 전자의 평균 이동 속도는 고작 [math(\rm0.28\,mm/s)] 이다. 전자의 순간 속도는 광속에 근접할 만큼 매우 빠르나, 도선 안에서는 도선의 양성자들에 부딪혀 이리저리 튕겨나가 제 속도를 못 내기 때문이다.[12][13] 에너지가 순식간에 전달되는 이유는 전기장이 생기기 때문이다. 달팽이처럼 기어가는 전자의 속력에 비해 전기장은 광속으로 생성되고 퍼진다.
7.2. 전류의 종류
7.2.1. 직류
자세한 내용은 직류 문서 참고하십시오.7.2.2. 교류
자세한 내용은 교류(전기) 문서 참고하십시오.7.3. 감전
감전으로 인해 사람이 사망하는 이유로 헷갈리거나 궁금해 하는 사람이 많은데 굳이 따지자면 감전사의 직접적인 원인은 전류이다. 다만 가장 근본적이고 직접적인 원인을 정의에서부터 따지고 들어간 후에 하나만 꼽아보자면 전류라는 것이지 다른 전기적 요소가 감전사의 조건이 아니라는 것이 아니다. 그저 평범하게 '감전사의 조건'이라하면 전압, 전류뿐이 아닌 매우 많은 요소가 있다. 감전으로 인해 사망에 이르려면 인체가 포함되는 전기적 회로가 구성되어 치사량의 전류가 통전해야 하는데, 이때 인체의 임피던스[14], 통전경로 및 시간, 접촉전압, 접촉면적, 주파수 등 에 따라 통전전류의 크기가 결정된다. 즉 몇 [math(\rm A)]의 전류가 흐르는가만 놓고 감전사를 하는지 안하는지는 알 수 없다는 것이다. 위의 설명이 복잡하다면 흔히들 알고 있는 옴의 법칙으로 생각해봐도 좋다. 단순히 인체의 피부저항[15]을 뚫고 일정량의 전류를 흐르게 하려면 일정크기의 전압도 필요하다는 것을 알 수 있을 것이다. 따라서 감전사의 원인이 전류라고 하는 것도, 전압이라고 하는 것도 100% 옳다고는 볼 수 없다는 것이다. 결국원인이 전류니 전압이니 하는 것은 단어의 정의 등으로 하는 말장난에 불과하다.감전사에 영향을 끼치는 전기적 요소들의 관계들에 대해 실례로 알아보면 정전기와 테이저건을 보면 된다. 정전기의 경우 전압은 수만 [math(\rm V)], 전류도 [math(\rm1\,A)]에 달하지만 통전시간이 [math(\rm1\,\textμs)]수준이기에 실질적인 통전전류의 크기는 매우 작으며, 테이저건의 경우 사람에게 명중시 최대전압이 [math(\rm1200\,V)]에 달하지만 전류는 고작 [math(\rm2\,mA)]정도이기에 사람이 죽지 않는다. 그리고 가끔 치사량의 전류가 흐르지 않았음에도 감전사 하는 경우를 볼 수 있는데, 이 경우에는 통전경로를 의심할 수 있다. 감전사는 대부분의 경우 심실세동에 의한 사망인데 아무리 작은 전류여도 심장에 가깝게 흐를수록 심실세동이 일어날 확률이 높기 때문이다.
하지만 이런 세세한 내용은 차치하고 결과적으로 우리가 실생활에서 가장 주의해야 할 것은 단연코 전압이다. 위에서도 말했듯이 전류가 흐르려면 전압이 필요한 것이고, 전압이 높으면 높을수록 전류는 많이 흐르며, 높은 저항 값에도 전류를 흐르게 할 수 있기 때문이다. 거기다 사람에게 치명적인 전류량은 매우 작은 값이며, 주변에서 흔히 접하는 전기는 교류이기에 불수전류[16]값도 [math(\rm15\,mA)]수준으로 매우 낮아 한번 감전되면 남의 도움 없이는 탈출할 수 없고 통전시간이 길어지면 결국 전류가 작아도 사망에 이를 수 있다.
아래는 전류와 인체의 반응을 서술해놓은 표이다.
전류 | 인체의 반응 |
[math(\rm0.67\,mA)] | 성인 여성이 전류가 흐르는 것을 느낄 수 있다. |
[math(\rm1\,mA)] | 성인 남성이 전류가 흐르는 것을 느낄 수 있다. |
[math(\rm5\,mA)] | 평균적인 여성이 참기 힘든 고통을 느낀다. |
[math(\rm8\,mA)] | 평균적인 남성이 참기 힘든 고통을 느낀다. |
[math(\rm10\,mA)] | 통증을 견딜 수 없다. (고통한계전류) |
[math(\rm20\,mA)] | 근육의 수축이 심해 벗어날 수 없다. (불수전류) |
[math(\rm50\,mA)] | 상당히 위험하다. (순간치사가능성) |
[math(\rm100\,mA)] | 치명적. (심실세동전류) |
7.4. 전류계
전류를 측정하는 기구를 전류계라 하는데 전압계에 비하면 여러모로 사용이 번거롭다. 전압계는 회로와 병렬로 연결하기 때문에 전위차를 알고 싶은 두 지점에 그냥 프로브를 대면 되지만 직렬로 연결해야 하는 전류계는 측정을 원하는 부분을 끊은 다음 양쪽 도선이 끝나는 부분에 각각 프로브를 대야 하는데 양쪽이 집게로 되어 있는 도선들을 마디마디 이어 만든 회로가 아니라면 전류계를 넣을 곳을 일부러 확보하기도 어렵다. 거기에 멀티미터 레버를 mA 위치에 놓고 A 단위의 전류를 측정하거나, 전압계처럼 병렬로 프로브를 대거나, 부하가 될 소자 없이 전지와만 단독으로 연결해서 퓨즈가 녹아 버리는 등 전류계는 조금만 잘못 다뤄도 고장날 원인이 여러 가지다.대학교 레벨에서도 이따금 저런 사고가 발생하고는 해서, 회로 실험 강의에서 전류는 직접적으로 측정하는 일을 자제하고 소자의 전압과 저항을 측정한 다음 옴의 법칙에 따라 전류를 계산해서 그것을 측정치로 취급하도록 하는 경우가 많다.
변압기의 원리, 정확하게는 패러데이의 전자기 유도 원리를 이용해 전류를 측정하는 방법도 있다. 후크미터[17]가 이를 이용해 전류를 측정하는 대표적인 측정기기이다. 계기용 변류기와 영상변류기도 이러한 원리를 이용하여 전류를 검출·측정해낼 수 있다.
8. 관련 문서
[1] '전류의 세기'라는 뜻의 프랑스어 'intensité du courant'에서 유래했다.[2] 도체 등에서 움직이는 전하를 띤 입자들의 평균 속도[3] 사실 농도 자체가 평균의 개념을 포함하고 있기 때문에 아래의 미소 전하는 사실 평균적인 값이다.[4] 왜냐하면 어떤 물리량 [math(\bf F)]에 대해 [math(\displaystyle \oiint_S {\bf F}\bm\cdot{\rm d}{\bf a})]는 어떤 폐곡면 [math(S)]를 통해 유출 혹은 유입되는 물리량을 뜻하기 때문이다.[5] 이것은 [math({\rm d}\bf a)]의 방향이 부피 영역 [math(V)]에 대해 밖으로 나가는 방향이라는 암묵적인 가정이 있다.[6] 독일의 물리학자로, SI단위계에서 전기 저항 또는 임피던스를 나타내는 옴([math(\Omega)])이 그의 이름에서 따온 것이다.[7] 전기전자공학과, 물리학과[8] 전류계는 사실 전압에 관계없이 흐르는 전류의 세기만 측정하는 것이므로 여기에 저항을 직렬로 연결하면 된다. 그리고 흐르는 전류의 세기에 저항을 곱해서 전압의 크기를 알 수 있다. 고압전압계 만드는 영상 참조[9] 심지어 각 자유전자의 속도는 모두 다를 수밖에 없다. 그래서 더더욱 평균속도를 사용한다.[10] 전류의 방향을 정의했던 물리학자인 벤자민 프랭클린이 공중방전을 관찰하면서 정의했었기 때문이다. 공중방전을 생각해보면 전자가 몰려있는 (후대 명칭의) 음극에서 (역시 후대 명칭의) 양극으로 불꽃이 튈 수밖에 없는데, 그것을 보고 불꽃이 튄 쪽을 뭔가를 잃었다는 의미에서 음극이라고 부른 것. 벤자민 프랭클린 당대에 공중방전을 시연하는 서커스 공연이 유행했었다고 한다.[11] 전자가 없어서 생긴 구멍. 전자를 물에 비유한다면 양공은 공기방울에 해당한다. 양전하를 가진 전자처럼 행동한다. 이 성질 때문에 준입자로 취급한다.[12] 그러면서도 전기장에 의해 조금씩 앞으로 나아가는데 이 속도를 '표류 속도' 혹은 '드리프트 속도'(drift velocity)라고 한다.[13] 음극선관 내의 음극선의 경우 관내가 진공이기 때문에 전자의 이동속도는 매우 빨라지게 된다. 이런 식으로 진공에서 전자 자체의 이동으로 전류가 흐르는 것을 대류 전류라고 한다.[14] 피부, 혈액, 근육의 저항 등[15] 연령, 성별, 부위, 수분 함유량 등에 따라 매우 큰 차이가 나나 통상적으로 [math(2500 \sim 5000\,\Omega)]을, 물에 젖어있는 상태 등의 경우 [math(500\,\Omega)]을 기준으로 잡는다.[16] 통전경로의 근육이 경련을 일으키고 신경이 마비되어 스스로 전원에서 이탈할 수 없는 상태. 쉽게 말하면 감전됐지만 스스로는 뗄 수 없는 상태![17] 클램프미터라고도 함