최근 수정 시각 : 2024-03-21 00:57:42

무한소수

파일:상위 문서 아이콘.svg   상위 문서: 소수(기수법)
연산
Numbers and Operations
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
<colbgcolor=#765432> 수 체계 자연수 (홀수 · 짝수 · 소수 · 합성수) · 정수 · 유리수 (정수가 아닌 유리수) · 실수 (무리수 · 초월수) · 복소수 (허수) · 사원수
표현 숫자 (아라비아 숫자 · 로마 숫자 · 그리스 숫자) · 기수법(과학적 기수법 · E 표기법 · 커누스 윗화살표 표기법 · 콘웨이 연쇄 화살표 표기법 ·BEAF· 버드 표기법) · 진법 (십진법 · 이진법 · 8진법 · 12진법 · 16진법 · 60진법) · 분수 (분모 · 분자 · 기약분수 · 번분수 · 연분수 · 통분 · 약분) · 소수 {유한소수 · 무한소수 (순환소수 · 비순환소수)} · 환원 불능 · 미지수 · 변수 · 상수
연산 사칙연산 (덧셈 · 뺄셈 · 곱셈 구구단 · 나눗셈) · 역수 · 절댓값 · 제곱근 (이중근호) · 거듭제곱 · 로그 (상용로그 · 자연로그 · 이진로그) · 검산 · 연산자 · 교환자
방식 암산 · 세로셈법 · 주판 · 산가지 · 네이피어 계산봉 · 계산기 · 계산자
용어 이항연산(표기법) · 항등원과 역원 · 교환법칙 · 결합법칙 · 분배법칙
기타 수에 관련된 사항 (0과 1 사이의 수 · 음수 · 작은 수 · 큰 수) · 혼합 계산 (48÷2(9+3) · 111+1×2=224 · 2+2×2) · 0으로 나누기(바퀴 이론) · 0의 0제곱 }}}}}}}}}

수 체계
{{{#!wiki style="margin:0 -10px -5px"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin:-6px -1px -11px"
사원수 [math(mathbb H)]
↑ 확장 ↑
복소수 [math(mathbb C)]
대수적 폐포, 행렬 표현, 순서쌍 구성 등 ↑ [[허수|허수 [math(\mathbb{C}]]
실수 [math(mathbb R)]
완비화, 데데킨트 절단 등 ↑ 무리수 [math(mathbb{R} setminus mathbb{Q})]
유리수 [math(mathbb Q)]
곱셈의 역원 정수가 아닌 유리수 [math(\mathbb{Q} \setminus \mathbb{Z})]
정수 [math(mathbb Z)]
덧셈의 역원 음의 정수 [math(\mathbb{Z} \setminus \mathbb{N})]
범자연수 [math(mathbb N_0)]
↑ 자연수의 집합론적 구성 ↑
[math(0)]
소수 [math(\mathbb P)] · 초실수 [math(\mathbb R^{\ast})] · 대수적 수 [math(\mathbb A)] · 초월수 [math(\complement {\mathbb A})] · 벡터 공간 [math(\mathbb V)] }}}}}}}}}


1. 개요2. 무한소수의 종류3. 기타

1. 개요


무한소수는 소수점[1] 아래의 0 이 아닌 숫자가 무한히 많은 소수를 의미하며, 크게 순환소수비순환소수로 나뉜다. 유한소수와 달리 소수점 아래의 자리가 끝없이 이어지는 소수를 말한다. 유명한 예로는 원주율(=3.141592...)이 있다. 일정한 지점 이후에서 숫자가 반복되느냐에 따라 순환소수(유리수)와 비순환소수(무리수)로 나뉘며, 비순환소수는 다시 대수적 무리수와 초월수로 나뉜다. 순환소수는 무한소수 중에서도 순환하는 무한소수다. 즉, 0.333333...[2] 이나 0.47834834834...[3] 처럼 순환마디가 계속해서 반복되는 소수다. 순환소수를 분수로 바꾼 뒤 기약분수로 나타내면 분모의 소인수는 2, 5 이외의 것이 있다. 대한민국에서는 보통 중2 때 배운다.

2. 무한소수의 종류

2.1. 순환소수

파일:상세 내용 아이콘.svg   자세한 내용은 순환소수 문서
번 문단을
부분을
참고하십시오.

2.2. 비순환소수

파일:상세 내용 아이콘.svg   자세한 내용은 무리수(수학) 문서
번 문단을
부분을
참고하십시오.

일정한 숫자 배열이 계속해서 반복하지 않는 소수다. 순환소수(유리수)와 달리 분모, 분자가 서로소로 이루어진 기약분수로 나타낼 수 없는 무리수며 당연히 유리수에 포함되지 않는다. 교과 과정에서는 순환하지 않는 무한소수라고도 한다.

비순환소수로는 [math(sqrt{2})], [math(sqrt{3})]등 대수적인 무리수와, [math(pi)](파이, 원주율), 자연로그의 밑 [math(e)], 오메가 상수, 겔폰트-슈나이더 상수초월수에 속하는 무리수가 있다.


비순환소수는 무한소수임을 증명하는 내용의 핵심 #

3. 기타

십진법에서 무한소수로 표현되는 수라도 진법을 바꾸면 유한소수가 될 수 있다. 이 예로, 1/3을 삼진법으로 나타내면 [math(0. 1_{(3)})]이다. 그 반대의 경우도 마찬가지. 이 예로는 0.2를 이진법으로 나타내면 [math(0. \dot 001 \dot 1_{(2)})]이 나온다. 일반적으로 기약분수를 [math(k)]진법의 소수로 나타내었을 때 유한소수이기 위해서는 분모의 모든 소인수가 [math(k)]의 소인수여야 한다. 이는 십진법에서 유한소수가 될 때 분수의 분모의 소인수가 2 또는 5만 있어야 한다는 점을 생각하면 이해하기 쉽다.

프로그래밍 하는 사람들이 주로 아는 문제인, Float형의 0.1 + 0.2 != 0.3 이 있다. 이는 결과값이 0.300...004 로 표현된다. 이유는 2진법 체계에서는 1/10 같은 나눗셈이 무한소수가 되는데, 이를 부동 소수점 기법으로 유효숫자 처리해서 그렇다.


파일:CC-white.svg 이 문단의 내용 중 전체 또는 일부는 문서의 r14에서 가져왔습니다. 이전 역사 보러 가기
파일:CC-white.svg 이 문단의 내용 중 전체 또는 일부는 다른 문서에서 가져왔습니다.
[ 펼치기 · 접기 ]
문서의 r14 (이전 역사)
문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)

문서의 r (이전 역사)


[1] 소수끼리의 계산에서 자릿수 맞추는 게 더더욱 중요해진다. 더 나아가 소수점을 지워버리면 아예 무한대가 되어버린다.[2] 순환마디는 3이다.[3] 순환마디는 834이다.