최근 수정 시각 : 2024-12-11 13:47:26

지질학

지질학자에서 넘어옴
과학의 범위
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px; word-break: keep-all"
좁은 의미 [[자연과학|
자연과학
]] 물리학 · 화학 · 생물학 · 천문학 · 지구과학(지질학 · 해양학 · 대기과학)
넓은 의미 [[형식과학|
형식과학
]] 논리학 · 수학 · 시스템 과학 · 전산학 · 통계학
[[응용과학|
응용과학
]] 간호학 · 거대과학 · 건축학 · 공학 · 농학 · 임학 · 수산학 · 수의학 · 약학 · 의학 · 치의학 · 한의학
[[사회과학|
사회과학
]] 심리학 · 사회학 · 정치학(행정학 · 정책학) · 경제학 · 교육학 · 군사학 · 미디어학 · 법학 · 경영학 · 사회복지학 · 인류학 · 지리학 · 지역학
비과학 [[인문학|
인문학1
]] 언어: 언어학2 / 예술: 문학 · 미술사학 · 음악사학 / 역사: 사학3 · 과학사학 · 고고학3 / 사상: 철학 · 종교학3 · 신학4
변경지대의 과학
비학문 병적 과학 · 쓰레기 과학 · 유사과학(대체의학) · 반과학
1 인문학을 확실하게 과학으로 분류하는 독일 같은 특수사례가 있으나 사회 전반 및 국제적으로 보편적인 경향성은 아니다. 대한민국의 교육법상으로 인문학은 '직관·체험·표현·이해·해석 등 인문학적 방법론을 수용하는 제반 학문'으로 정의하고 있으며[1], 과학과 분리된 개념으로 다루고 있다.[2] 다만 근래에는 과학적 방법론이 연구에 쓰이는 사례도 종종 있다.

[1] 인문학 및 인문정신문화의 진흥에 관한 법률 제3조 2. "인문학"이란 인문에 관하여 탐구하는 학문으로서 언어학·문학·역사학·철학·종교학 등의 학문과 직관·체험·표현·이해·해석 등 인문학적 방법론을 수용하는 제반 학문 및 이에 기반을 둔 융복합 학문 등 관련 학문분야를 말한다.[2] 과학은 교육법상 과학수학정보 교육 진흥법의 관리하에 있다.
}}}}}}}}}

자연과학의 일반적 분류
물상과학
Physical Science
생명과학
Biological Science
물리학
Physics
화학
Chemistry
천문학
Astronomy
지구과학
Earth Science
생물학
Biology

1. 개요2. 현황3. 지질학의 분야
3.1. 지리정보학 (Geomatics) / 공간정보공학 (Geoinformatics)3.2. 지구물리학 (Geophysics)3.3. 지구화학 (Geochemistry)3.4. 고생물학(Paleontology)3.5. 구조지질학(Structural Geology)3.6. 퇴적학(Sedimentology)3.7. 층서학 (Stratigraphy)3.8. 암석학 (Petrology)3.9. 광물학 (Mineralogy)
3.9.1. 보석학 (Gemology)
3.10. 광상학 (Economic Geology)3.11. 지사학 (Historical Geology)
3.11.1. 지질연대학 (Geochronology)
3.12. 화산학 (Volcanology)3.13. 지진학 (Seismology)3.14. 수리학 / 수력학 (Hydraulics)3.15. 수로학 (Hydrography)3.16. 수문학 (Hydrology)
3.16.1. 지하수학 (Groundwater Hydrology)
3.17. 토양학 (Pedology)3.18. 설빙학 (Cryology)3.19. 빙하학 (Glaciology)3.20. 고기후학 (Paleoclimatology)3.21. 행성과학 (Planetary Science)
4. 유명한 지질학자5. 지질학과6. 수험과목으로서의 지질학7. 관련 문서

1. 개요

Geology

지구, 특히 고체 지구의 물성이나 역학, 역사를 다루는 학문이다. 또한 이 고체 지구와 상호작용하는 다른 계나 물질도 함께 다루고 있다. 예컨대 지하수는 지질학에서 연구되고 있는 대상 중 하나이다. 쉽게 말해 발 밑의 것들을 다루고 있는 학문이다. 대기과학, 해양학과 함께 지구과학의 한 부류로 간주된다. 지질학은 자연과학으로, 한국에서는 사회과학으로 다루어지는 지리학과는 구분된다.[1] 애초에 지리학은 연구의 목적이 지표상의 인간이나 환경 등의 요소가 어떤 상호작용을 하는지에 대해 알아보는 것이다. 물론 어느정도 학문적으로 겹치는 사항이 있다. 지리학에서 자연지리학의 주요 분과인 지형학은 지질학을 기본으로 하는 내용이 많아 응용지질학으로 분류하기도 한다.

고등학교 때 지구과학을 좀 공부해본 사람들은 흔히 지질학을 암석이나 광물 이름을 외우는 지루한 분야라 생각한다. 고등학교 지구과학에서 암기만 시키는 이유는, 그 암기하는 내용의 원리, 이유를 가르치기 위해 필요한 과학 지식이 고등학교 수준을 넘기 때문이다. 그렇지만 지질학은 물리학화학, 생물학에 기반한 복잡한 학문이다. 지질학의 근간을 이루는 광물, 암석, 판구조론 등의 지식들의 기반은 모두 물리적, 화학적이론에 기반하기 때문이다.

덧붙여 현대 지질학은 단순한 고전역학이나 화학반응 수준을 넘어 복잡한 열역학 모델과 양자역학, 컴퓨터 공학과 씨름할 수도 있어야 한다. 오죽하면 학부 때 지질학을 가르치지 않고 대학원에 와서 지질학을 가르치자는 목소리도 간혹 들려온다. 그러나 지질학 자체가 요구하는 배경지식의 양도 만만치 않아서 물리나 화학을 잘한다고 해서 지질학을 쉽게 접근할 수 있는 것도 아니다.

오늘날 지질학은 대중들에게는 많이 알려지지 않았지만 매우 다양한 분야를 가지고 있을 뿐만 아니라 많은 부분에 접해있다. 자연재해는 아마 지질학의 여러 개념 중 가장 사람들이 익숙하게 알고 있는 부분일 것이다. 지질학적 자연재해에는 각종 사태(눈사태, 산사태 등), 홍수, 지반침하, 각종 화산 재해, 지진, 쓰나미 등 다양한 범위를 아우른다. 이들의 중요성은 말할 필요가 없을 듯하다.

지질학은 재해 이외에도 자원, 각종 환경 및 안전, 기후변화 등에서 중요한 위치를 차지한다. 기후변화는 대기과학해양학에서 다룰 것 같지만 지질학은 이들의 특성을 이해하는 데 중요하다. 지형과 풍화 작용은 기후를 지배하며 이들의 변화는 생각보다 시간 단위가 짧다. 또한 지질학은 대기과학과 해양학에서 제공할 수 없는 긴 시간의 과거 정보를 제공해줄 수 있는 거의 유일한 수단을 제공한다. 고기후학의 많은 이론은 지질학적인 기반으로 구성된다.

자원은 지질학에서 가장 규모가 크고 응용 범위가 넓은 부분이다. 사실 지질학이 인류에게 기여하는 많은 요소 중 가장 대표적이고 실용적인 것을 꼽으라면 자원이라고 말할 수 있을 것 같다. 단순히 석유, 석탄 뿐만 아니라 생물이나 대기권에서 얻는 몇 가지 원소를 제외(예컨대 질소)한 대부분의 수십 가지 원소는 지질학을 거쳐야만한다. 땅만 판다고 자원이 튀어나오는 것이 결코 아니기 때문에 심도있는 연구가 뒷받침되지 않으면 안 된다. 숨쉬듯 쓰고 있는 일상품에서부터 값비싼 보석까지 온갖 자원들은 무수한 지질학 이론의 덕을 본 셈이다. 사실 아이들이 좋아하는 공룡과 같은 고생물에 대한 이해는 석유 및 석탄과 같은 자원을 연구하는 과정에서 급격하게 늘어났다. 고생물을 이해하고 화석을 연구하는 것이 퇴적과 관련된 자원을 이해하는 데 중요한 위치를 차지해왔기 때문이다.

또한 각 지역의 지반 상태와 성질, 이에 따른 안전 여부, 재해 방지 등은 모두 지질학적 배경이 요구되는데, 이는 방사능 폐기물 처리 문제와 같이 중요한 사안에도 필수적이다. 또한 토양, 지하수, 물 및 호수 오염 등에도 지질학이 필요하며 이들을 모니터링하고 예측하는 데도 중요하다. 오늘날에는 이산화 탄소 지중저장(Carbon Capture and Storage, CCS)이나 암석저장이라는 기후변화의 대규모 사업에서 지질학은 핵심을 이루고 있다. 매우 복잡한 땅 밑의 구조와 성질을 제한된 정보로 알아내야하므로 다양한 배경지식이 요구되는 셈이다.

이외에도 암석의 복잡하기 짝이 없는 변성, 변형, 성질 변화를 추적하는 과정에서 물리학적, 화학적인 이론이 많이 발전해왔다는 사실을 부인하기 어렵다. 아직도 암석 속에서 자연의 원리를 파헤치는 수많은 지질학자들이 있으며 이들은 물리, 화학 분야에 영감을 주고 있다. 실제로 20세기 열역학의 발달과 응용에서 지질학은 지대한 공헌을 해왔다. 또한 지구 내부의 극한의 환경에서 만들어지는 여러 물질들은 신소재를 개발하는 데에도 영감을 주고 있다.

덧붙여 지구의 움직임을 제대로 이해하는 과정은 지구 바깥의 행성의 성질을 예측하거나 파악하는 데 중요한 실마리를 제공한다. 현재 미국에서는 지질학이라는 분야를 단순히 "geology"라고 하지 않고 "planetary science(행성과학)"이라고 이름 붙여 고체 행성에 대한 이해를 하는 학문으로 받아들이기도 한다. 행성에 생명력을 불어넣는 데에는 지구와 같은 역동적인 지질학적 현상(이를테면 판구조론)이 필요하기도 하므로 외계 행성에 대한 연구에도 중요하다고 말할 수 있다.[2]

이 많은 실리적인 이유 이외에, 사실 많은 지질학자들은 "흥미"와 "호기심"에 이끌려 오늘도 무거운 야외조사용 망치를 들고 오지로 나선다. 돈벌이가 되고 사람들에게 도움이 되는 연구도 중요하겠지만, 사실 지질학이 제공해줄 수 있는 무수한 이야기들은 무척 흥미롭다. 46억 년이라는 기나긴 세월 동안 기록된, 길게는 수억 년에서 짧게는 수마이크로 초에 달하는 사건들을 파헤치고 있기 때문이다. 우리가 흔히 만지고 느낄 수 있는 많은 암석과 흙더미 속에서 찾아낼 수 있는 화려한 이야기에 매료되어 평생을 연구하는 셈이다. 사실 지질학은 지구의 시간을 다루는 학문으로, 과거의 역사를 추적해낼 수 있는 분야이다. 구체적인 때와 이야기를 엮어낸다는 점에서 시간을 다루는 다른 과학 분야와는 다른 독특한 성질을 가진다. 동위원소의 성질을 이해하면서 급속도로 발전한 지질연대학(geochronology)은 그런 점에서 매우 독특하다. 마치 문과에서 역사학과 비슷한 위치라고 볼 수 있겠다. 실제 논문도 결론은 그림과 함께 멋진 이야기를 풀어내는 경우가 많다.

지질학은 진화론과 더불어 창조에 관한 소지구설을 반박하는 유용한 도구가 될 수 있다. 소지구설을 지지하는 기독교인들은 자신들의 성경해석을 근거로 지구의 나이가 1만~4만 년 정도라고 주장하는데 지질학은 지구의 나이가 수십억 년이라는 증거를 제시할 수 있기 때문이다. 이처럼 지질학은 다루는 시간의 단위가 굉장히 길다. 자연과학에서 '지질학적으로 매우 짧은 시간'이란 표현을 쓸 때가 많은데, 이 '짧은 시간'이란게 길게는 수백, 수천만년 단위일 때도 있다.

지질학은 다른 학문 분야와 연관성이 매우 높다. 예를들면 암석이나 광물에 대한 연구는 종종 화학, 재료공학과 연관이되고, 고생물학은 생물학, 지질물리는 물리학, 지형에 관련된 연구는 지리학과 연관이 많이 된다. 더 광범위하게 나가서 지구과학에서 부분적으로 배우는 대기, 해양쪽은 환경공학, 기상학. 우주 분야는 천문학과 아주 밀접하다.

2. 현황

고생물학, 암석학, 퇴적학, 구조지질학 분야는 가장 전통적인 분야임에도 "힘들다"는 이유로 학생들의 수가 적어 문제가 되고 있다. 반면 첨단 기기를 곧잘 사용하는 지구물리학, 광물학 쪽에는 '비교적' 사람이 풍부하다. 1970년 이후에는 이 분야의 기저에 판구조론이 결합하여 있는 상태이며, 인공위성, 수치모델링 등이 지구물리학에 포함되었다. 기후변화 문제가 대두되면서 빙하를 연구하는 분야도 오늘날 매우 강세이다. 빙하학은 대기과학, 해양학, 지질학이 모두 만나는 곳이고, 기본적으로 빙하라는 물질 자체가 지질학에 포함되는 연구대상으로 간주한다. 빙하 자체도 퇴적암의 일종이자 광물이기 때문. 빙하가 가둔 공기 기포는 지질학에서는 포유물(inclusion)이라고 말하고, 연구 자체는 대기화학적인 방법이 많이 사용된다.

특히 이 중에서 암석학, 퇴적학, 구조지질학, 고생물학은 야외에 직접 답사를 나가 연구하는 분야로 잘 알려져 있다. 애초에 지질학의 아버지인 오라스 베네딕트 드 소쉬르는 현대 산악인에게도 귀감이 되는 산악인의 아버지이기도 하다. 많은 학생들이 어려서 접한 아름다운 화석이나 광물샘플을 보고 지질학을 선택하는 경우도 많은데 지질학의 야외조사(field research)는 오지로 나가서 하루 거의 반나절가량 산을 올라야 되는 등 체력이 받쳐주지 못하거나, 등산, 등반 등에 취미를 붙이지 못하면 무척 힘들기 때문에 학생들이 지쳐서 그 분야를 포기하거나 중간에 전공을 방향전환하는 일이 중간중간 일어난다. 더군다나 지질학 야외조사는 안전수칙을 제대로 숙지하지 않을경우 매우 위험하며, 특정 분야의 야외조사나 모니터링은 목숨을 위협한다.[3] 야외조사를 하기 좋은 곳은 하나같이 위험하기 일쑤인데, 고속도로의 옆, 절벽, 깊은 숲 속, 사막, 동굴, 폐광, 극지방, 화산 [4] 등이 있다. 더군다나 어떤 경우, 지질학적으로 매우 중요한 곳이지만 사회적으로 위험한 곳이기도 하다(중동, 아프리카의 분쟁지역). 우리나라에서는 별로 해당되지 않지만 사람이 한명도 거주하지 않는곳, 이른바 오지의 연구를 해야한다면 몇 개월 동안 텐트 생활을 하면서 연구를 해야한다. 더군다나 야외에 나가서 관찰한다고 다 되는 게 아니라, 상당한 이론과 경험이 누적되어야만 야외 조사에서 빛을 발하므로, 수년에 걸친 연마를 해야한다. 많은 지식과 경험이 필요한 육체적으로 힘든 3D업종 분야이기 때문에 오늘날 젊은 세대의 유입이 매우 감소하고 있어 전 세계 지질학 분야의 학자들이 걱정을 하고 있다.

다만 탄성파 조사, GPR 레이더, 전기비저항조사 등()의 기술이 발달하면서 노가다를 덜 할 여지가 생겨 마냥 미래가 어둡지 않다.

3. 지질학의 분야

지질학은 응용과학적인 성격이 강하여 각 분야의 경계에는 학문 간의 융합이 잘 일어난다. 쉽게 말해 이게 무슨 분야인지 말하기 애매해진다.

3.1. 지리정보학 (Geomatics) / 공간정보공학 (Geoinformatics)

참고 지리공간 정보의 구조와 특성, 수집, 분류와 검증, 저장, 처리, 묘사, 보급 등에 대한 과학 기술이다.
  • 측량학 Land Survey
    측량학은 측지학보다 작은 규모에서 지표면에 있는 점의 관계 위치를 결정하고 측정하는 방법에 대한 학문이다.
  • 측지학 Geodesy
    지구 전체를 입체 시변공간에서 중력, 지각 변동 등 지구물리학적 변동들을 측량하고 표현하는 방법에 대한 학문.
  • 사진측량학 Photogrammetry
    사진을 찍고 컴퓨터 매핑과 모델링으로 지형을 입체적으로 관측하는 분야다.
  • 항공위성관측지질학 Observational Geology
    • 원격탐사 Remote Sensing
    • GPS Global Positioning System
    • 네비게이션 Satellite navigation
  • GIS Geographic Information Systems



3.2. 지구물리학 (Geophysics)

물리학 이론을 기반으로 하여 지구 물질의 성질, 상태, 구조를 파악하고 나아가 지구 내부의 역학적 움직임을 파악한다. 야외 탐사를 기본으로 삼는 전통 지질학과 달리, 지구 자기장과 중력을 분석할 수단이 생기면서 발전된 현대적인 분과다.

3.3. 지구화학 (Geochemistry)

지구의 화학적 조성을 연구하는 전통적인 분과.

3.4. 고생물학(Paleontology)

고생물학은 말 그대로 고생물에 대해 연구하는 학문이다. 생명이 탄생한 이래 셀 수 없이 많은 종류의 생물이 나타났다가 사라졌다. 이들을 추적하여 다양한 정보를 이끌어내는 데 가장 중요한 근거는 화석이다. 옛날옛적의 생물에 대한 가장 직접적인 보존물이 바로 화석이기 때문이다. 흔히 화석이라고 하면 큼지막한 척추동물의 화석[5]만 생각하겠지만 당장 석탄과 석유 등의 화석연료가 있고, 현미경으로만 볼 수 있는 꽃가루나 미생물의 화석도 많이 있다. 어떤 석회암은 그 커다란 암석 전체가 거의 전부 고생물 화석으로만으로 구성되어있기도 하다.

3.5. 구조지질학(Structural Geology)

파일:external/c1.staticflickr.com/1561965140_66cda99463.jpg
암석은 충분한 힘을 받으면 저렇게 접히고 구부러지고 늘어난다. 사진의 암석은 그래도 힘을 별로 안 받은 축에 속한다. 강한 변성을 받으면 암석이 변성받기 전의 구조는 남아있지 못한다.

구조지질학은 암석이나 땅이 힘을 받았을 때 어떻게 반응하는 지를 공부하는 학문이다. 힘을 받은 암석이나 땅은 그 힘에 따라 독특한 구조를 만들어낸다. 작은 규모로는 현미경에서 드러나는 구조부터 대륙을 가로지르는 구조까지 다양한 구조를 만들어낸다. 보통 가장 유명한 구조로는 습곡이나 단층이 있을 것이다. 작은 단층 구조는 손가락보다 작지만 큰 단층은 1,300 킬로미터가 넘어간다.[6] 또한 같은 힘이라도 암석의 물성이나 온도, 압력에 따라 반응하는 양상이 다른데, 이들을 체계적으로 연구한다. 변성암 내부의 광물의 배열이나 형태 역시 미구조(microstructure)라고 하여 현대 구조지질학에서 관심있게 바라보고 있는 연구 대상이다.

구조지질학적인 정보는 석유, 석탄을 포함한 온갖 자원이 어디에 어떤 모양으로 매장되어 있을 것인지를 파악하는 데 가장 먼저 고려되어야할 정보 중 하나이다. 또한 지진이나 화산이 발생할 때 암층 내부의 구조에 따라 그 분포나 양상이 달라지므로 구조지질학을 연구하는 것은 알고 보면 매우 다양한 분야에서 큰 기여를 할 수 있다. 그리고 지질학에서 가장 중요한 아이템인 '지질도(geological map)'를 만들어내는 분야도 바로 이 분야이다.

그럼에도 불구하고, 전통적인 구조지질학은 요구되는 연구기간이 무척 길고[7] 고된 작업을 필요로 하기 때문에 학생은 점점 줄어가는 상황. 너무나 중요함에도 불구하고 힘들다고 하여 너도나도 기피하는 상황. 지질학의 온갖 야외조사 중에서도 가장 육체적으로 고된 야외조사를 하는 분야로 알려져 있다.

한반도는 지질구조가 눈이 핑핑 돌아가게 복잡해서 구조지질학적인 접근이 매우 절실하다. 그러나 구조지질학 전문가는 국내에 극히 드물다. 이 때문에 한국에서 구조지질학을 잘 배운다는 건 무척 어려운 일이다. 유럽 대학원생들은 몇 주에서 두 달까지 통째로 알프스 산맥과 같은 곳으로 가서 텐트치고 공부를 한다. 미국 서부와 동부도 비슷해서, 뒷산이 교과서에 실리는 지역들인 경우도 허다하다.

3.6. 퇴적학(Sedimentology)

파일:external/www.ucmp.berkeley.edu/walcottquarry.jpg
그 유명한 버제스 셰일의 모습. 바로 이 셰일 퇴적층에서 캄브리아기 대폭발이 발견되었다. 퇴적암은 이처럼 고대의 환경과 생물을 담아내는 역사책과 같은 역할을 수행한다.

모래과 같은 퇴적물 그리고 그들이 쌓여서 만들어지는 퇴적암과 퇴적구조 등에 대해 연구하는 학문이다. 어떤 의미로는 퇴적학은 퇴적암석학이라 부르고 암석학의 일종으로 분류할 수도 있을 것 같지만 실제로 암석학이라는 단어를 사용할 때 퇴적학은 조금 분리된다. 이는 퇴적학과 함께 붙어다니는 층서학(stratigraphy)과 더불어 분지해석(basin analysis)이 퇴적학에서만 볼 수 있는 독특한 성질의 것이기 때문이다. 보통 퇴적학은 암석학이 접근하는 방식과 다른 형식의 연구가 진행되어 학문의 관심사와 성질이 달라 보통 구분한다. 이러한 차이의 근본적인 원인은 퇴적암이 기본적으로 지표에서 만들어지는 암석이며 이에 따라 지표환경이 기록되어 있기 때문이다. 이는 중요한 차이로서, 퇴적학은 변성암이나 화성암이 하기 힘든, 고환경을 복원하는 독특한 일을 해낼 수 있다.

퇴적학에 입문하게 되면, 가장 먼저 입자의 성분, 성질이나 크기, 모양, 퇴적 방식, 생물의 영향과 같은 기본적인 사항에서 시작된다. 사층리나 층리, 점이층리와 같은 퇴적구조도 함께 공부하게 된다. 이를 기반으로 퇴적학 교재는 보통 어떤 환경에서 그와 같은 성질의 퇴적암이 발견되는지를 설명하는데, 이 모든 사항이 숙지되면 마침내 분지해석을 하게 된다. 퇴적물은 기본적으로 위치에너지상 낮은 곳에 쌓이려고 하므로, 퇴적물이 만들어지는 큰 영역을 하나의 분지로 보고 이 분지의 형성 및 진화 과정을 그대로 복원해낼 수 있다. 이러한 복원에 요구되는 자료는 무진장 많은데, 이러한 근거들을 종합하기 위해서는 뼈빠지는 야외조사가 뒷받침되어야 한다. 그래서 퇴적학을 연구하는 연구실에 학생이 들어가게 되면, 신입 대학원생을 해안가의 퇴적암으로 된 절벽 어딘가에 1달 정도 버려두고 깨달음을 얻어 돌아오게 하기도 한다.(...)

퇴적학 역시 화학이나 물리학 혹은 고생물학과 결합하면 더욱 강력해진다. 이에 따라 퇴적학은 눈덩이 지구라는 흥미로운 지구 역사를 밝혀내거나, 갖가지 대량 멸종 사건(예컨대 공룡의 멸종)을 밝혀내기도 한다. 또한 석유, 석탄, 천연가스, 그리고 일부 귀금속, 대량 철생산지(대표적으로 Banded Iron Formation, BIF)는 모두 퇴적암에서 비롯되어 퇴적학은 자원 개발에 핵심 분야를 구성하고 있기도 하다.

여담으로 전세계에서 사랑받는 많은 지질학적 관광지는 퇴적암의 구조에서 비롯된다. 대표적인 예로 그랜드 캐니언, 카파도키아, 파묵칼레, 호주 울루루 (에어즈록), 미 서부 모뉴먼트 밸리 등이 있다. 또한 에베레스트 산의 대부분은 변성암으로 되어 있지만 산 정상 바로 아래에 큰 역단층이 있어서 산 정상은 퇴적암으로 되어 있다. 즉, 지구에서 가장 높은 곳은 퇴적암으로 되어 있다.

3.7. 층서학 (Stratigraphy)

퇴적학과 세트로 묶이는 학문이다. 퇴적학이 퇴적암의 형성 과정을 연구한다면, 층서학은 이미 만들어진 퇴적암의 분포를 연구한다.

3.8. 암석학 (Petrology)

파일:external/sp.lyellcollection.org/F1.large.jpg
변성암석학의 꽃, pseudosection의 모습. 모암 성분, 온도, 압력에 따라 열역학적 평형을 이루는 다양한 광물상(phase)조합을 도시하는 방법 중 하나이다.

암석학은 이름에서 알 수 있듯이, 각종 암석을 분류, 정의하고 그것의 기원과 변천을 연구하는 학문이다. 보통 퇴적암은 퇴적학에서 다룬다는 점을 생각하면, 보통 암석학이라는 단어는 변성암과 화성암을 대상으로 하고 있다. 각각을 변성암석학(metamorphic petrology), 화성암석학(igneous petrology)이라고 부른다. 암석학의 가장 기본적인 역할은 암석을 분류하고 정의하기 때문에, 가장 기본적으로 사용되는 도구가 바로 편광현미경이다. 이 때문에 오늘도 전 세계의 지질학과에서는 대학원생들이 돌을 자르고, 갈고 광내고 있다 암석학은 먼저 암석의 가장 기초적인 자료를 수집하고, 명명하며 궁극적으로 이들의 기원을 시간에 따라 추적해내는 것을 목적으로 삼는다. 즉, 고등학교 지구과학에서 학생들이 그토록 염증을 내는 암석의 이름들을 붙여주는 학문이다. 어떻게 보면 지질학에서 가장 핵심을 이루는 학문이라고 할 수 있다. 실제로 지질학과에 암석학을 연구하는 사람이 없다면 그 학과는 팥 없는 찐빵이라는 소리를 들어도 할 말이 없다.

두 암석학의 공통점은 지하 깊은 곳, 즉 압력이나 온도가 지표보다 높은 조건에서 암석의 상태를 고찰한다는 점에 있다. 따라서 두 암석학은 모두 압력과 온도를 고려하는 열역학이 매우 중요하며 실제로 암석학 입문 교재들은 하나같이 열역학을 중요하게 다루고 있다. 특히 온도와 압력을 기술하는 데 탁월한 깁스 자유 에너지를 많이 활용하며 이는 재료공학과 궤를 같이 한다. 다만 보통 암석은 고려해야하는 주원소가 칼슘, 마그네슘, , 망간, 소듐, 포타슘, 티타늄, 알루미늄, 규소, 산소, 수소(혹은 ), 탄소(혹은 이산화 탄소) 등 매우 많다. 운이 좋으면 세 가지에서 네 가지 성분계만으로도 성분 표현이 가능하지만, 계가 복잡해지면 복잡해질수록 그 어느 성분도 배제하기 어렵다. 여기에 용융 성분(liquid)까지 가세하면 시스템이 매우 복잡해져서 지금도 활발하게 연구가 진행되어가고 있는 추세이다.

화성암석학의 시작은 암석의 용융과정이다. 이 용융과정은 어떤 의미로는 가장 극한의 변성암 조건이라 할 수 있다. 암석이 용융되기 시작하는 순간부터 화성암이 간직하는 수많은 화학적, 물리적 조건들이 만들어지기 때문에, 녹는 당시의 환경이나 조건이 매우 결정적이다. 이후 형성되는 게 바로 마그마이며, 이 마그마의 물리적, 화학적 변화와 주변과의 간섭이 어떻게 이루어지는지는 아직도 밝혀져야할 것들이 많다. 마그마가 여러 과정을 거쳐 만들어진 결과가 온갖 종류의 화성암인데, 화성암은 화학적, 광물학적 성질에 따라 매우 다양하게 나뉜다. 이들은 오늘날 판구조론과 연계되어 다양한 이야기가 등장하고 있다. 특히 화성암석학은 광물학, 지구화학과 밀접하게 교류하며 발전해나가고 있는 추세이다.

변성암석학의 기본은 '모암(母巖)'을 파악하는 것이다. 모암의 성분 차이가 변성암의 성분차이를 만들어내기 때문. 이후 이 변성암이 어떤 온도, 압력 조건을 거쳐가느냐에 따라 무수한 광물 조합을 만들어내며, 이 조합을 역추적하여 연구를 진행할 수 있다. 변성암은 궁극적으로 이 암석의 온도, 압력이 시간에 따라 어떻게 변해왔는지를 역추적하고, 나아가 이 암석이 변성되기 위해 요구되는 구조적 변화를 추적하여 판구조론적인 모델을 만들어내는 것을 목적으로 삼는다. 변성암은 과거 대륙과 지괴들의 수백만 년에서 수십억 년의 기나긴 역사를 복구해낼 수 있는 힘을 가지고 있기 때문이다. 실제로는 암석 내의 단 하나의 잘 자란 광물에서 수십 페이지의 논문이 흘러나올 수도 있다.

결론적으로 암석학자들에게 암석이란 역사학자들의 고문헌과 같은 존재이다. 암석을 '읽음'으로써 과거를 알아내어 지구의 역사를 복원하려고 하는 것이다. 사실 암석학이 다루는 암석이 지구에 국한될 필요가 없다. 암석학은 단순히 지구 내부의 물질을 넘어서서, , 화성, 운석, 우주선에 붙어서 같이 오는 우주먼지 등도 연구대상으로 삼고 있다. 실제로 NASA는 전문 엔지니어나 물리, 화학, 생물학 전공자 못지 않게 이런 암석학, 그리고 기타 분야의 지질학 전문가들도 굉장히 많이 채용하고 있다. 아폴로 계획의 후기 미션들은 이들의 활약이 없었으면 불가능했을 미션들이다.

3.9. 광물학 (Mineralogy)

파일:external/www.meteorite-times.com/nwa6704ThinSection1.jpg
초염기성 암석[8]을 박편(thinsection)[9]으로 관찰한 모습. 광물의 일종인 사방휘석(opx)과 감람석(ol)이 화려한 간섭색을 만들어내고 있다. 박편을 통한 암석 관찰은 지질학자가 갖추어야할 기초 소양 중 하나라 할 수 있다.

이름에서 쉽게 유추할 수 있듯이 광물학은 광물에 대한 학문이다. 광물의 성질이나 산출조건, 혹은 광물 내의 성분 변화와 물성 변화를 기반으로 산출환경을 역유추해내기도 한다. 광물학 해당 문서 참조.

3.9.1. 보석학 (Gemology)

3.10. 광상학 (Economic Geology)

파일:Main Vein (hydrothermal quartz-gold vein), subsurface exposure in Nalunaq Gold Mine, southern Greenland.jpg
그린란드 Nalunaq 금광산의 금을 포함한 석영맥
광상학이란 경제적, 산업적 가치가 있는 지구의 물질을 연구하는 학문이다. 가치가 있는 지구의 물질에는 귀금속, base metal[10], 비금속 광물, 보석, 암석, 화석연료 등이 있다. 광상학에서 광상은 이러한 물질이 지각내에 농집되어 있는 부분을 의미한다.
자원공학과의 차이는 자원공학이 광상의 탐사 및 채굴, 처리에 중점을 둔다면 광상학은 그보다는 어떤 지질학적 프로세스로 광상이 형성되었는지에 중점을 둔다. 물론 가까운 분야이기에 많은 관심사를 공유한다.

3.11. 지사학 (Historical Geology)

역사의 지질학. 시간에 따른 지질의 변화 과정을 추적하고 기록하는 학문이다. 고고학 분야에서 기초적인 접근방식으로 쓰인다. 지질학의 역사인 지질학사와는 다른 학문이다.

3.11.1. 지질연대학 (Geochronology)

3.12. 화산학 (Volcanology)

화산에 관해 다룬다. 더 구체적으로는 화산의 형성 과정, 화산에서 분출 및 분화하는 가스를 이루는 성분 분석, 화산의 폭발 양상과 화산 재해 연구 등이 있다. 또한 화산학의 연구 방향은 화성암석학적으로 접근하는 방법과 퇴적(암석)학적으로 접근하는 방법 등이 있다.
화산학 연구방법에 관해 다루고 있는 내용을 담은 링크

3.13. 지진학 (Seismology)

지진에 관해 다룬다. 더 구체적으로는 지진 발생과 전파 양상에 대해 연구하고 지진학을 통하여 지구 내부구조를 이해하며 지진재해에 대해 탐구하는 학문이다.
지진학 연구방법에 대해 다루고 있는 링크1
지진학 연구방법에 대해 다루고 있는 링크2

3.14. 수리학 / 수력학 (Hydraulics)

유체역학을 응용하여 유속, 수압 등 물의 역학을 연구한다. 주로 토목공학으로 응용된다.

3.15. 수로학 (Hydrography)

하천, 호수 등 지표상에 존재하는 물의 의 깊이, 너비, 형태 등 물의 지도를 만든다,

3.16. 수문학 (Hydrology)

물의 이동, 분포, 순환을 연구한다. 해양과학과 중복되는데, 지질학에서 수문학이라 하면 보통 하천과 지하수를 다룬다.

3.16.1. 지하수학 (Groundwater Hydrology)

3.17. 토양학 (Pedology)

3.18. 설빙학 (Cryology)

3.19. 빙하학 (Glaciology)

3.20. 고기후학 (Paleoclimatology)

3.21. 행성과학 (Planetary Science)

지질학, 지리학의 우주 버전.

4. 유명한 지질학자

  • 오라스 베네딕트 드 소쉬르 (Horace Bénédict de Saussure): 산악인으로 더 유명하지만, 기상학에 지대한 영향을 끼친 현대 기상학의 아버지이기도 하며, 지질학, 암석학, 빙하학, 고기후학의 선구자이면서 식물학을 연구하기도 했다. 그리고 지질학이라는 단어를 학술 용어로 사용한 인물이다.
  • 찰스 로버트 다윈 (Charles Robert Darwin): 진화론으로 더 유명하지만 화산섬에 대한 연구나 산호초의 형성에 관한 연구의 선구자이다.
  • 노먼 보웬 (Norman Bowen): 유명한 열역학자이자 실험암석학자. 보웬 반응 계열로 유명하다.
  • 로니에 톰슨 (Lonnie Thompson): 빙하시추코어를 통한 연구의 선구자.
  • 바인, 메튜스, 몰리(Vine, Mathews & Morley): 고지자기 패턴을 기반으로 해령확장을 밝혀낸 3명.[11]
  • 브루스 헤이젠 (Bruce C. Heezen): 마리(Marie Tharp)와 함께 대서양 중앙 해령의 모습을 그려내고 지형 자료를 구축해낸 해양학자이자 지질학자. 그의 자료는 판구조론의 성립에 지대한 공헌을 하게 된다.
  • 빅토르 골드슈미트 (Victor Goldschmidt): 지구화학의 아버지로 불리는 사람. 사실상 현대지구화학의 가장 근본적인 논리 틀을 다진 사람이다.
  • 스티븐 제이 굴드 (Stephen Jay Gould): 고생물학에서 가장 유명한 학자 중 한 명. 단속평형설.
  • 아서 홈스 (Arthur Holmes): 우라늄-납을 이용하여 최초로 방사성동위원소에 기반한 연대측정을 한 사람. 절대연대측정의 아버지이다.
  • 앙드리자 모호로비치치(Andrija Mohorovicici): 그 유명한 모호면을 발견한 사람. 맨틀과 지각의 경계를 그었다.
  • 에드워드 쥐스 (Edward Suess): 곤드와나 대륙과 테티스해의 제시로 잘 알려져 있다. 또한 알프스의 지질학적 연구의 선구자이다.
  • 월터 알바레즈 (Walter Alvarez): 그 유명한 운석 충돌에 의한 공룡 멸종설을 제시한 사람. 물리학자인 그의 부친과 함께 이 이론을 제시하여 유명세를 탔다.
  • 잉게 레만 (Inge Lehmann): 내핵-외핵 경계, 즉 레만 불연속면을 발견한 사람. 달리 말하면 내핵을 발견했다. 참고로 여성 과학자이다.
  • 제임스 허턴 (James Hutton): 지질학에서 가장 근본 원리로 지목되기도 하는 '동일과정' 법칙을 세운 사람. "현실은 과거의 열쇠다."라는 지질학의 기초적인 탐구자세를 말했다.
  • 찰스 라이엘 (Charles Lyell): 동일과정설(uniformitarianism)을 제시한 사람. 지질 현상은 극히 긴 시간 동안 천천히 일어난다는 토대를 설명했다. 라이엘의 이 학설은 찰스 다윈의 진화론에도 직접적으로 영향을 주었다. 라이엘 본인도 진화론을 적극적으로 지지했다.
  • 클레어 패터슨 (Clair Patterson): 오늘날 누구나 아는 46억년 지구의 나이를 계산해낸 사람. 45.5억 년이라는 값을 1956년 세상에 알렸다. 이후 측정의 전문가가 되었으며 해양학에 기여하고 세계 납 사용을 억제하는 데 지대한 공헌을 했다.
  • 찰스 월콧 (Charles D. Walcott): 그 유명한 버제스셰일을 발견한 사람.
  • 투조 윌슨 (J. Tuzo Wilson): 하와이가 열점임을 제시하고 하와이 열도의 궤적을 해석해낸 사람으로, 그의 해석은 수능 문제로도 출제되었다. 또한 초대륙의 분열과 형성의 주기를 의미하는 윌슨주기도 그의 작품이다. 이외에도 여러 공헌을 한 바 있다.

  • 프랜시스 터너 (Francis J. Turner): 변성상(Metamorphic facies)을 제시하여 변성암석학에 지대한 공헌을 함.
  • 해리슨 슈미트 (Harrison Hagan Schmitt): 아폴로 17호의 달 착륙선 조종사이자, 인류 역사상 12번째로 달을 밟은 우주비행사. 아폴로 프로그램의 달 착륙 이후 진행할 달 연구와 전문 테스트 파일럿인 동료 우주비행사들에 대한 지질학 교육에서 큰 기여를 했지만 정작 본인이 탑승할 예정이었던 아폴로 18호가 취소되었다. 하지만 미국 과학계의 전폭적인 지지와 청원을 통해 조 엥글 대신 아폴로 17호의 달 착륙선 조종사로 배정되어 달을 밟았다.
  • 해리 H. 헤스 (Harry Hammond Hess): 맨틀이 대류하여 지판이 움직인다는 모델을 제시한 사람.

5. 지질학과

파일:상세 내용 아이콘.svg   자세한 내용은 지질학과 문서
번 문단을
부분을
참고하십시오.

6. 수험과목으로서의 지질학

7. 관련 문서

파일:상세 내용 아이콘.svg   자세한 내용은 지질학 관련 정보 문서
번 문단을
부분을
참고하십시오.

[1] 한국 지리학계의 분위기가 사회과학 같다는 의미다. 교사의 경우 임용을 위해서라도 지형의 생성 과정을 다루는 지형학 같은 학문을 공부해야 하는 경우는 있는데 물리나 화학이나 수학의 비중이 낮다. 21세기 들어 GIS를 다루는 경우가 늘고 있는데 한국에서는 지질학과 무관한 도시, 건축 분야에서도 많이 활용된다. 서양에서는 지리학도 지형/기후 등을 다루는 과학분야의 '자연지리학'과 사회의 현상을 다루는 사회과학분야의 '인문지리학'으로 나눠지고(한국에서 방송 활동을 한 제임스 후퍼가 호주에서 지질학과 자연지리 등을 같이 다루는 대학원에서 공부하기도 했다.), 한국도 사실은 학문적으로는 이렇게 가르치지만 서구와 달리 이런 자연지리를 자연과학을 다루는 곳처럼 가르치고 연구하는 경우가 드물다.[2] 즉 지질학은 지구라는 하나의 행성에 제한된 학문이 아닌 전 우주의 고체행성 전반에 대하여 다루는 학문이다. 그러나 현재 인간의 기술력으로는 지구가 아닌 고체행성에 인간이 직접 간적이 없기 때문에 훗날 기술의 발달로 인간이 지구가 아닌 고체행성에 갈 수 있게된다면 지질학의 연구범위는 더욱 넓어질 것이다.[3] 이런 특성때문에 실제로 지질조사를 갈때 군기도 제법 쎈편이다. 방심했다가는 잘못하면 사고로 이어지기 때문.[4] 예컨대 "나 일주일 뒤에 출장 갈 거야." / "어디?" / "남극" 이런 식이다.[5] 대표적으로 공룡이 있겠다.[6] 산안드레아스 단층[7] 논문 하나 쓰겠다고 수년을 버려야하는 경우가 허다하다. 요즘 과학계는 빠르게 논문이 나와 다양한 실적을 쌓아올리는 것을 기대하는 추세이기 때문에 몇 년이 걸릴지 알기 어려운 구조지질학 연구는 선호되지 않는다.[8] 사진의 암석은 사실 초염기성 성분을 가진 운석이다.[9] 0.03mm 두께로 연마한 암석을 슬라이드글라스에 붙여서 고정해놓은 것. 이렇게 얇게 연마하면 많은 광물은 사진처럼 화려한 모양새를 갖는다. 광물의 비등방성에 의해 굴절각이 2개가 만들어지기 때문이다. 난반사를 줄이고 표면이 매끄러워야하므로, 박편의 연마는 1um 혹은 그보다 섬세한 연마재까지 사용된다.[10] 구리, 철, 니켈 등 기본적인 금속, 귀금속과 대비된다.[11] 이 중에 Vine은 2014년 기준으로 살아있고, 영국 UEA에 명예교수로 있다.

분류