최근 수정 시각 : 2025-01-22 20:06:29

클라인의 병

클라인의 항아리에서 넘어옴
<rowcolor=#fff> '기하학·위상수학
'
{{{#!wiki style="margin: 0 -10px -5px; min-height: calc(1.5em + 5px)"
{{{#!folding [ 펼치기 · 접기 ]
{{{#!wiki style="margin: -5px -1px -11px"
평면기하학에 대한 내용은 틀:평면기하학 참고.
기본 대상
공리 유클리드 기하학 · 비유클리드 기하학
도형 기본 도형 평면 · 부피 · 꼬인 위치 · 각기둥 · 각뿔 · 원기둥 · 원뿔 · (공 모양) · 전개도 · 겨냥도 · 다면체 (정다면체) · 정사영 · 대칭(선대칭 · 점대칭)
곡면 타원면 · 타원포물면 · 쌍곡포물면 · 원환면
프랙털 도형 시에르핀스키 삼각형 · 시에르핀스키 사각형(멩거 스펀지) · 망델브로 집합 · 코흐 곡선 · 드래곤 커브
기타 다포체 · 초구 · 준구 · 일각형 · 이각형
다루는 대상과 주요 토픽
대수기하학 대수다양체 · · 스킴 · 에탈 코호몰로지 · 모티브 · 타원곡선
미분기하학 미분다양체 · 측지선 · 곡률(스칼라 곡률 · 리만-크리스토펠 곡률 텐서 · 리치 텐서) · 열률 · 텐서 · 쌍곡 공간(쌍곡삼각형 · 푸앵카레 원반) · 타원 공간(구면삼각형) · 아핀접속
위상수학 위상 공간 유계 · 옹골 집합 · 다양체 · 택시 거리 공간 · 연결 공간 · 위상수학자의 사인곡선 · 조르겐프라이 직선
위상도형 사영평면 · 뫼비우스의 띠 · 클라인의 병 · 매듭(/목록)
주요 성질·정리 분리공리 · 우리손 거리화정리(우리손 보조정리) · 베르 범주 정리 · 부동점 정리
대수적 위상수학 호모토피 · 사슬 복합체 · 호몰로지 이론(호몰로지 · 코호몰로지) · 사상류 군 · 닐센-서스턴 분류 · 호프대수
기타 차원 · 좌표계 · 거리함수 · 그물 · 쾨니히스베르크 다리 건너기 문제 · 사이클로이드
정리·추측
실베스터-갈라이 정리 · 해안선 역설 · 바나흐-타르스키 역설 · 라이데마이스터 변환 · 오일러 지표 · 푸앵카레 정리 · 페르마의 마지막 정리 · 호지 추측미해결 · 버치-스위너턴다이어 추측미해결
분야
논증기하학 · 대수기하학 · 미분기하학 · 해석 기하학 · 매듭이론 · 프랙털 이론 · 정보기하학 · 위상 데이터분석 }}}}}}}}}

파일:external/upload.wikimedia.org/Klein_bottle_translucent.png
1. 개요2. 상세3. 대중매체에서4. 관련 문서

1. 개요

Klein Bottle(Klein's Bottle). 위상수학상의 특이입체. 간단히 말하자면 뫼비우스의 띠4차원 버전. 클라인 대롱이라고도 한다.

독일의 수학자 펠릭스 클라인(Felix Klein)이 만들었다고 해서 이런 이름이 붙었다. 원래 이름은 클라인의 을 뜻하는 Kleinsche Fläche였다고 하는데, 클라인의 (Kleinsche Flasche)으로 번역자가 잘못 보았다. 그리고 병이라는 오역을 독일어권이 받아들였다.

2. 상세

클라인의 병을 둘로 쪼개면 뫼비우스의 띠 모양이 나타난다. 각 띠의 가장자리가 맞붙은 형태. 뫼비우스의 띠A에서 한 쪽을 한 바퀴 돌고 다른 쪽으로 나올 때 뫼비우스의 띠B로 갈아타고, 뫼비우스의 띠 B에서 또 한 쪽으로 한 바퀴 돌고 다른 쪽으로 나올 때 뫼비우스의 띠A로 갈아타는 식이다.
파일:external/3.bp.blogspot.com/klein.gif
뫼비우스의 띠와 마찬가지로 겉과 속이 일체화된 도형으로, 3차원상에서는 표현의 한계로 뚫고 들어가는 부분이 생기나 실제로는 그렇지 않다고 한다. 위 그림은 단지 보기 쉽게 3차원으로 표현한 것일 뿐이다. 위상수학을 공부하는 수학자라면 지겹게 보게 되는 도형. 2차원 공간의 한계를 3차원 공간에서 해결한 뫼비우스의 띠와 비슷하게, 3차원의 한계를 4차원에서 해결한 초입방체로, 그 구조는 뫼비우스의 띠와 같아 안과 밖이 구분되지 않는다는 점이 특징이다.
파일:attachment/토러스/ab-a-b.png
  • 토러스(원환면): 위 그림에서와 같이 평면의 가장자리를 서로 같은 방향으로 붙여주면 도넛모양의 원환면이 된다. 굳이 3D모델링을 안 써도 사무실에 굴러다니는 A4 용지로도 금방 만들 수 있을 정도로 간단하다.
  • 위 그림에서 한 쪽은 원환면처럼 그대로 붙여주고, 나머지 방향을 거꾸로 붙여주면 클라인의 병이 된다. (물론 3차원에서 이를 구현할 수는 없다.)
  • 가로축도 세로축도 거꾸로 붙여주면 사영평면이 된다. 이건 그림으로 도식화하기도 좀 애매할 정도.



당연하게도 우리가 사는 3차원에서 클라인의 병을 만드는 것은 불가능하다. 뫼비우스의 띠를 종이에 그릴 때 종이가 꼬아지는 부분은 면이 안 보이게 그리는 것처럼, 이 병을 3차원에서 만들기 위해서는 튜브에 구멍을 뚫어야 하기 때문. 그래서 클라인 병은 입체가 아닌 '초'입체로 분류된다. 그 중에는 겉으로 보이는 모양이 비슷하게 모형을 만든 것도 있지만, 이 모형들은 전부 구멍을 뚫은 탓에 안팎이 구분되므로 엄연히 같지는 않다. 현실에서 제대로 만든 모형은 뼈대만 있는 와이어프레임(wireframe) 모형뿐이다. 간단한 예로 클라인의 병에는 이론적으로 물을 담을 수 없어야 하지만, 우리가 사는 3차원에서 만든 모형은 물을 넣어보면 병 안쪽에 물이 찬다.[1] 당연하게도, 이건 3차원 상에서 보이는 모양만 재현한 거라 그렇다. 뫼비우스의 띠는 3차원상에선 띠를 뚫지 않고 안쪽에서 바깥쪽으로 나갈 수 있지만 2차원 그림으로 그렸을 땐 불가능한 것을 생각해 보자.[2]
4D 클라인 병은 어떻게 생겼나요? - 한글 자막 있음
각종 교육 서적에서는 '안과 밖이 구분되어 있지 않기 때문에 클라인 병에 물을 담을 수 없다'라고 설명하고는 하는 데 뫼비우스의 띠처럼 물이 병의 안쪽면을 타다보면 언젠가는 바깥쪽으로 나갈 수 있기에 틀린 설명은 아니다. 하지만 아무래도 3차원 공간에 사는 입장에서는 최소한 관이나 밑바닥 쪽에서 물이 고일 수 있는 것처럼 보이기 때문에 쉽게 이해가 가지 않는 설명이다. 따라서 앞서 설명했듯이 3차원에서 겉보기에는 겹친 병처럼 보이지만 실제로는 위 영상과 같이 4차원에서는 애초에 겹쳐있지도 않고 무언가를 담을 수도 없는 형상이기에 물을 담을 수 없다라고 이해하는 것이 편하다. 이는 우리가 3차원밖에 보지 못하기에 쉽게 이해하기 어려운 부분이며 초입방체를 직관적으로 받아들이기 어려운 사례 중 하나이다.

3. 대중매체에서

  • 네이버 웹툰 쿠베라에서 넌지시 언급되는 위상형태. 클라인의 병이라는 이름이 언급되지는 않지만, 뫼비우스의 띠의 양 모서리를 이어붙이면 나오는 위상으로 언급된다. 당연히 3차원에 사는 보통 인간들은 클라인의 병조차 생각해 낼 수 없다.[3] 구멍이 뚫리지 않은 제대로 된 답을 상상할 수 있는 인간은 계산 없이 마법을 사용할 수 있다.[4]
  • 조세희 작가의 연작소설 난장이가 쏘아올린 작은 공에 나오는 챕터 '클라인씨(氏)의 병'에서 언급된다. 피해자가 가해자가 되고, 가해자가 피해자가 되는 자본주의의 현실과 모든 사람이 불평등 없이 살고자 하는 희망을 나타내는 일종의 장치다. 주인공 영수는 클라인씨의 병을 보고 깨달음을 얻고 은강그룹 회장을 살해하려다가 대신 그 동생을 살해한다.
  • 가면라이더 디케이드에서 가면라이더 디케이드(가면라이더)가 사용하는 라이드 북커도 이 병의 형식을 이용해서 카드를 무한히 담을 수 있고, 사용자의 원하는 생각에 따라서 원하는 카드가 자동적으로 맨 앞으로 나오는 형식을 이용하기에 싸울때 라이드 북커에서 일일이 카드를 찾지 않는다. 그리고 라이드 북커 건 모드의 에너지원이나 머신 디케이더의 연료도 클라인의 병을 통해 무한정 공급할 수 있다고 한다.
  • 매직 더 개더링의 Elkin Bottle은 클라인의 애너그램이며 그림 역시 클라인의 병이다. 카드 그림
  • 리비아썬에서는 이 병에 시체들을 숨겨서 옮긴 뒤, 특수한 허브와 소금을 넣은 단지에 넣어서 부활시키는 갈바룬[5]인들이 나온다.
  • 폴아웃: 뉴 베가스의 DLC인 올드 월드 블루스싱크 탱크의 일원인 클라인 박사의 이름도 여기서 따왔다. 다른 멤버들의 이름도 모두 무한함을 상징하는 단어에서 따왔다는 걸 생각하면 싱크 탱크의 속성과도 잘 연결되는 설정이다.
  • 일본추리 소설 중에도 여기에서 제목을 따온 '클라인의 항아리(クラインの壺)'라는 작품이 있다. 1993년에 나온 작품으로 VR(가상현실) 게임을 소재로 하고 있다. 참고로 이 소설에서 유래된게 소드 아트 온라인의 등장인물인 클라인이다.
  • 베르나르 베르베르의 소설 에서도 등장한다. 주인공의 성이 클라인이며 이는 클라인 병에서 유래하였다. 클라인 병과 같이 현실세계와 인간 내면은 연속적이며 내면의 성찰을 통해 현실의 진실에 접근할 수 있다는 것을 비유하고자 사용하고 있다.
  • 용자왕 가오가이가기계31원종 중 폐원종은 이 클라인의 병을 만드는 능력을 지녔고, 이를 사용해 GGG와 제이더를 봉인했다. 그러나 스타 가오가이가가 시전한 더블 헤드 드라이버로 찰나의 순간에 구멍이 생겨[6] 제이더가 탈출해 밖에 있던 제이 아크와 메가퓨전해 폐원종을 쓰러트려 클라인의 병은 소멸했고, GGG는 해방된다.
  • 유희왕토폴로직 폭탄 드래곤은 클라인의 병을 어깨뽕(?)으로 쓰는 위엄을 보여준다.
  • 푸른 강철의 아르페지오에 등장하는 안개의 함대가 사용하는 방어막인 '클라인 필드'는 이 클라인의 병의 원리를 이용한 것이다.
  • 아카데미에 위장취업당했다 68화 마력의 공감각편 에서 주인공 루드거 첼리시가 자신의 강의를 듣는 플로라 루모스 에게 자신이 연구 중인 마법술식 '클라인 병'을 보여준다.[7]

4. 관련 문서


[1] 3분 35초부터 클라인의 병에 물을 넣고 빼내는 과정이 나온다.[2] 엄밀히 말하면 클라인 병을 2차원 면으로 둘러싸여 구성된 3차원 상의 병이나 그릇이라고 한다는 것은, 뫼비우스의 띠를 평면 상에 납작하게 짓눌러 동그라미 안에 6자가 있는 것 같은 모양으로 만들고는, 접힌 부분의 선을 지우면 나머지 부분을 1차원 선으로 둘러싸인 2차원 상의 그릇이라고 할 수 있다는 것과 하등 다를 바 없다.[3] 상위랭크 마법사인 라나 레이미아조차 상상하지 못해서 실제로 만들어서 붙여보는 짓을 했다. 정확히는 교수가 과제로 낸 거라 '안되는걸 시킬리 없다'며 붙들고 있었다. 문제는 이 과제가 클라인의 병을 모르는 상태로 3차원에서는 구현이 불가능하다는 것을 직관적으로 알 수 있는지를 보기 위한 문제라는 것.[4] 고차원에 거주하는 수라나 신의 경우 이걸 무리없이 상상할 수 있고, 초월기를 사용하는 하프들도 가능한 모양이지만 순혈이나 쿼터의 경우는 엄청나게 드물다고 언급된다.[5] 작품 속에서 등장하는 중동 국가들을 모델로 한 가상의 국가 중 하나.[6] 이 때 시시오 레오가 언급한 탈출법은 위상수학적 의미로 해석한 중간값 정리의 일종이다. 클라인 스페이스의 각 지점의 곡률이 급격하게 변하기 때문에, 중간값 정리에 의해 곡률이 통상공간과 일치하는 점이 존재할 수 밖에 없고, 그 점에 억지로 블랙홀급 공간변동을 일으킬 수 있는 두 드라이버의 힘을 최대로 발휘해서 깨버린 것. 작중 용어로는 레프리션 필드와 어레스팅 필드의 최대 곡률이 일치하는 특이쌍곡점이 존재한다라고 언급하는데, 여기서 말하는 레프리션 필드는 확장되려는 힘. 즉 음의 곡률 필드이며, 어레스팅 필드는 수축시키려는 힘. 즉 양의 곡률 필드다.[7] 마법술식이란 마력이 흐르는 그림인데, 그걸 3차원으로 옮기고 또 3차원의 뫼비우스의 띠 같은 이 클라인 병에까지 옮기려 하고 있는 것이다.