물리교육과, 체육교육과, 기술교육과와 함께 사범대학 내에서 남자 비율이 가장 높은 과로[2], 수학교사의 로망을 품고 오는 사람들 + 수학 & 교사 이 두마리 토끼 노리는 사람들 + 수학과는 좀 부담스러워서 온 사람들로 붐비지만 거기에 비해 설치 학교수가 적고 사범대 특성상 높은 커트라인이 겹쳐 경쟁률이 생각보다 많이 빡세다고 볼 수 있다. 그만큼 들어가기도 어려운 학과이다.[3][4]
하지만 현실은 임용고시의 높고 빡센 벽에다[5] 수업은 대부분 교육학이 낑겨들어가 있거나 임용준비 위주로 돌아가 있어 정말 수학을 깊게 파고 싶은 학생들에게 한탄이 나오게 만드는 학과. 거기다가 임용준비와 교육실습 때문에 수학과 메이저 과목[6] - 교육학 - 수학교육학 3가지 커리큘럼을 3년 안에 끝내야 하니 시간이 없는 관계로 보통 수학과에선 2학년 때 배우는 선형대수학을 1학년 전공필수로 지정해놓고 미적분학과 동시에 배우는 곳도 있다.
수학교육과의 통상적인 과내 순수 커리큘럼은 다음과 같다. 사범대 특성상 교육학과 교육공학을 위시한 순수교육학 과목도 들어야 하며, 일부 대학의 경우 메이저 과목과 교육방법을 묶어서 대수교육, 해석교육이란 과목으로 강의하기도 한다. 대학의 재량에 따라 실해석학이나 수치해석, 수리통계, 컴퓨터 관련과목을 가르치기도 한다.
수학교육학의 내용은 크게 다음과 같이 분류하곤 하지만, 사실 아래의 개략적인 분류만으로는 수학교육학의 의미를 제대로 알 수 없다. 저렇게만 두고 보면 단순히 철학에 수학을 끼얹은 것, 심리학에 수학을 끼얹은 것, 교육학에 수학을 끼얹어서 수학교육학이라고 부르는 것이 아닌가 하는 말을 할 수 있다. 그러나 수학교육학이 존재하는 목적은 수학교육의 목적과 함께한다. 세상이 수학을 필요로 한다면, 수학을 아는 사람을 필요로 하고 있다면, 그것이야말로 수학을 제대로 교육하기 위한 수학교육학이 필요하다는 말이 된다. 즉, 수학을 가르치고 배우는 현장에서 일어나는 모든 현상이 수학교육학이라는 학문의 대상인 것이다.
해석학과 위상수학의 내용들이 학생들의 지식이 어떻게 발달하는 지에 대한 이야기를 해주지 않는다. 프로이트나 라캉같은 사람들이 수학의 지식이 어떻게 전달되는 지에 대해서는 이야기해주지 않는다. 이들 사이를 연결하는 것으로 인간의 심리, 학습, 발달과 수학의 관계에 대해 연구하는 학문이 곧 수학교육학이며, 그 부가효과로서 수학을 잘 교육하기 위한 어떠한 방법들이 논의될 수 있는지 나오는 것이다. 그리고 그 내용이 곧, 수학교육학의 목적론적 본질에 해당한다.
교육학 또는 전공 A+B 중 어느 하나라도 40% 미만을 득점하면 과락으로 불합격처리된다. 즉, 교육학에서 총 20점 중 8점 미만을 득점하거나, 전공에서 총 80점 중 32점 미만을 득점하거나 둘 중 어느 하나라도 해당되면 해당년도 임용시험은 과락으로 불합격처리된다. 이 시험에 응시하기 위해선 한국사능력검정시험 3급 이상의 자격증이 필요하다.
교육부 고시의 교사자격종별 및 표시과목별 기본이수과목에 따른 교과교육학(25%~35%)과 교과교육학을 제외한 교과내용학(65%~75%)의 비중으로, 교과교육학(수학교육학) 24점, 교과내용학(수학) 56점 정도로 출제되고 있다. 수학의 각 영역별 출제 배점은 해석학(12~14점), 현대대수학(10~11점), 복소해석학/미분기하학/확률과 통계(6점), 위상수학(4~6점), 정수론/선형대수(4점), 이산수학(2~4점)순이다. * 수학교육론
평가 영역
평가 내용 요소
수학과 교육과정 및 교육사
우리나라 수학과 교육과정의 이해, 수학과 교육과정의 국제적 동향, 수학교육사, 수학교육철학 등
수학 영역별 교육론
수와 연산 교육, 대수 교육, 기하 교육(측정 교육 포함), 함수 교육(미적분 교육 포함), 확률과 통계 교육, 수학 교과서의 이해 등
수학 교수·학습론
수학 학습 심리학, 수학 교수·학습 원리와 방법 등
수학 학습 지도 및 평가
수학적 문제해결, 의사소통, 추론의 지도, 수학교육에서 도구(공학적 도구, 교구 등)의 활용, 수학사의 교육적 이해 및 적용, 수학과 수업 설계, 실행 및 분석, 수학과 평가, 학생의 이해 및 오개념 분석 등
약 24점의 비중으로 출제된다. 수학교육학자의 이론을 직접적으로 묻는 문제, 구체적인 상황에서 교과 영역별 교수·학습 방법을 제시하는 문제, 평가와 관련된 문제 등이 제시된다. 기본 이론과 교육과정을 암기하고, 이를 바탕으로 문제에서 주어진 상황을 분석하여 답안을 서술해야 한다. 교육부에서 고시한 교육과정 문서의 각 항을 직접 묻는 문제가 매년 출제되고 있어 교육과정 암기가 필수적이며, 교육과정 전환기에는 전후의 교육과정을 비교하는 문제가 출제되기도 하여 각 교육과정의 차이점을 분석하고 교육과정이 변화의 원인과 논리를 파악하는 것 또한 필요하다. 수학교육론에서는 수학화 교수·학습 이론과 수학 교수·학습 상황론이 빈출되며, 특히 구체적인 상황에서 관찰할 수 있는 극단적 교수현상을 분석하는 문제는 매 해 출제되고 있다. 교과 영역별 교수학습 이론에 관한 문제는 매년 수와 연산, 대수, 함수, 기하, 확률과 통계 영역 중 2~3 영역이 고루 출제된다. * 해석학
평가 영역
평가 내용 요소
실수체계
연산에 관한 성질, 대소 관계, 완비성, 위상적 성질 등
수열
무한 수열의 수렴성, 부분 수열, 단조 수열, 코시 수열 등
연속
함수의 극한, 연속 함수와 그 성질, 고른(균등) 연속 등
미분
도함수, 미분 가능 함수의 성질 등
적분
리만 적분, 리만 적분 가능 함수의 성질, 특이 적분 등
급수
무한 급수의 수렴성, 수렴 판정법 등
함수열
점별 수렴, 고른(균등) 수렴, 함수항 급수, 거듭제곱(멱) 급수, 테일러 급수, 초등 초월 함수 등
편도함수와 다중적분
다변수 함수, 편도함수, 연쇄 법칙, 다중 적분, 반복적분, 선적분, 그린의 정리 (미분적분학 수준)
12점의 비중으로 출제된다. 수학 과목 중 배점과 중요도에서 현대대수학과 함께 부동의 투탑을 이루는 과목이다. 서술형 3 문항[7]으로 구성되며, 정확한 계산과 논증을 동시에 요하는 과목이다.
함수열 또는 함수항 급수의 균등수렴(평등수렴, 고른수렴)은 매년 서술형 문항으로 출제되어 중요하게 다루어진다. 균등수렴의 정의 및 그와 동치인 명제들을 이해하는 것은 기본이며 수열 또는 급수가 균등수렴함을, 또는 그렇지 않음을 보이는 기술을 익히고 있어야 한다. 다소 복잡한 정리는 문제에서 증명없이 사용할 수 있도록 주어지기도 하였으나, 2018학년도 시험부터 관련 정리를 제시하지 않고 있어 극한 교환 정리와 그 사용 조건을 정확히 암기하고 문제 상황에 따라 적재적소에 활용할 수 있어야 한다. 더 나아가 해석함수와 항등 정리에 대한 문항이 기출되었기 때문에 해석함수의 기초까지 학습이 필요하다.[8] 첫 눈에 보기엔 복잡한 형태의 함수열 또는 함수항 급수를 제시하여 오판을 유도하는 경우도 많아, 증명 과정 전반을 설계하는 해석적 직관과 함수를 조작하는 대수적 감각을 동시에 요하기도 한다.
서술형 문항 중 나머지 한 문항에서는 수열, 연속, 미분, 적분 중 한 영역이 출제된다. 균등연속(평등연속)과 미분이 빈출되는 편이나 그 외의 영역들 또한 독립 문항으로 출제되기도 했으며, 각 영역이 직접 출제되지 않더라도 다른 문제를 해결하는 과정에서 각 영역의 정리를 활용해야 하는 경우가 많기 때문에 영역 전반 걸쳐 꼼꼼한 학습이 필요하다. 수열은 수열의 수렴/발산 여부를 판정하는 것 자체도 중요하지만, 함수의 극한, 연속, 균등연속 판정 및 함수열과 함수항 급수의 균등수렴의 판정 등 해석학 전반에 걸쳐 중요하게 활용되므로 기초부터 탄탄하게 다져놓아야 한다. 특히 급수의 다양한 수렴 판정법은 함수항 급수의 수렴 판정법에 응용되기 때문에 연계하여 학습하는 것이 중요하다. 연속 영역에서는 varepsilon−delta 논법으로 정의된 극한과 연속의 의미를 이해하는 것을 시작으로 연속성과 수열의 수렴성의 관계, 조임 정리(샌드위치 정리), 사잇값 정리, 최대·최소 정리 등 주요 정리와 그 증명을 학습해야 한다. 균등연속은 연속 영역에서 가장 중요한 개념으로서 정의, 일반적인 연속과의 차이점, 판정법 등을 정확히 이해 및 암기하고 있어야 한다.
편도함수와 다중적분 영역에 해당하는 다변수 미적분학과 관련된 내용은 주로 이변수 함수 수준에서 다뤄지며 이중적분 또는 벡터장의 선적분을 계산하는 문제가 한 문항씩 출제된다. 수험생들이 미적분학을 다소 소홀히 경향이 있으나, 다변수 함수의 연속성에 관한 문제, 극값 문제, 보존장의 경로독립성 등 미적분학의 주요 내용이 잊을만 하면 출제되기 때문에 꼼꼼하게 공부해야 한다. 이 영역의 문항은 기입형으로만 출제 되었으나, 기입형 문항 수 조절에 따라 2021학년도 시험에서 서술형 문항이 출제되었다.
2014학년도 이전 객관식 문항 및 논술형 문항에서는 실함수와 복소함수의 공통점과 차이점을 묻기도 하였다. 이후 문항수와 유형이 조정된 2020학년도 시험에서는 복소해석학과 혼합한 서술형 문제가 출제되었다.[a]* 복소해석학
약 6점의 비중으로 기입형과 서술형 전체에 걸쳐 출제된다. 코시-리만 방정식, 복소적분, 유수 정리 등이 중요하게 다루어진다. 복소해석학의 서술형 문제는 꾸준히 중상 이상의 난도로 출제되고 있으며, 고난도 문항이 제시되는 경우도 있다. 코시 적분 공식의 응용인 최대 절댓값 원리와 리우빌의 정리 등을 이용해 특정 조건을 만족시키는 정칙함수를 결정하는 문제 등이 주로 출제된다. 고립특이점에서의 유수 또한 빈출되는 요소이다. 코시-리만 방정식, 조화함수의 성질 또한 기입형과 서술형 전반에 걸쳐 중요하게 다뤄진다. 2018학년도 시험에서는 기입형 문항으로 그 전까지는 기출되지 않았던 일차분수변환 문제가 출제되어 수험생들을 당황하게 만들었다.[10] 2020학년도 시험에서는 해석학과 혼합한 서술형 문제가 출제되었다.[a]* 위상수학
평가 영역
평가 내용 요소
집합
논리, 집합, 함수, 기수, 서수 등
위상의 기초
위상의 개념, 기저 등
사상
연속사상, 위상동형, 적공간, 상공간 등
거리공간
거리공간의 성질 등
수렴과 분리공리
점렬, 가산공간 등, T_0,~T_1,~T_2,~T_3,~T_4</math>공간, 정칙공간, 정규공간 등
컴팩트 공간
컴팩트 공간, 가산컴팩트 공간, 점렬컴팩트 공간, 컴팩트화 등
연결공간
연결공간, 국소연결공간, 호상연결공간 등
약 4~6점의 비중으로 기입형과 서술형 문항으로 출제된다. 2009학년도부터 2013학년도까지 시행된 2차 논술형 문제에서는 미분기하학과 결합하여 임용시험 끝판왕 과목으로 악명 높았으나, 2014학년도부터 시험 유형이 변경된 후 비중이 줄고 비교적 평이한 난이도로 출제되고 있다. 2020학년도 시험부터 기입형 2점 문항이 추가로 출제되어 비중이 기존 4점에서 6점으로 늘어났다.두 위상의 곱위상, 부분공간 위상, 몫위상, 거리 위상 등으로 위상이 주어지고, 해당 위상의 위상적 성질을 분석하는 문제와 열린집합, 폐포, 도집합, 경계 등을 계산하는 문제가 출제된다. 문제의 위상을 분석하기 위해 열린집합의 형태를 파악하는 것이 최우선이다. 평면 위에 나타낼 수 있는 위상을 다루는 경우가 대부분이므로 기하적으로 접근하는 방법도 도움이 된다. 위상적 성질로는 거리화 가능성, 컴팩트성, 연결성과 연결성분 등이 주로 다루어진다.* 현대대수학
평가 영역
평가 내용 요소
군
군의 개념과 기본 성질, 부분군, 치환군, 순환군, 잉여류와 라그랑주의 정리, 준동형과 인자군, 대칭군과 교대군, 직적과 직합, 유한 아벨군, 실로우 정리 및 유한군의 구조
환
환의 개념과 기본 성질, 부분환, 아이디얼, 정역, 체, 극대와 소 아이디얼, 잉여환, 유클리드 정역, 주 아이디얼 정역, 유일 인수분해 정역, 다항식 환, 기약 다항식, 아이젠슈타인의 판정법, 정역의 분수체, 표수
체
확대체, 단순 확대, 대수적 확대, 분해체, 분리체, 유한체, 작도가능성, 갈루아 이론
8 또는 10점의 비중으로 서술형 2문항과 기입형 1문항이 출제된다.[12]해석학과 마찬가지로 학습의 어려움과 배점에서 투톱을 달리는 과목이며, 정확한 계산과 논증을 동시에 요구하는 과목이다. 갈루아 이론은 서술형 문항으로 고정 출제되며, 군, 환, 체 중 두 영역이 나머지 기입형 및 서술형 문제로 다뤄진다. 평가 내용 요소 전체 영역이 고르게 출제되고 있으며, 현대대수학 교재의 구성이 군에서 시작하여 갈루아 이론에 이르는 과정이 긴밀하게 연관되어 있기 때문에 과목 전체에 걸쳐 체계적인 학습이 필요하다. 2020학년도 이전 시험에서는 갈루아 이론과 관련된 문항이 5점 문제로 고정 출제되었으며, 문항 수와 배점이 조정된 2020학년도 시험 이후에도 갈루아 이론 및 다항식의 분해체에 대한 문항이 매년 출제되고 있다. 갈루아 이론을 이용해 구체적인 다항식과 그 분해체의 구조를 분석하는 문제, 특정한 조건을 만족시키는 확대체에 대한 고찰 및 갈루아 이론 자체에 대한 이해를 묻는 문제가 주로 제시된다. 특히, 체의 정규확대체와 갈루아 군의 정규부분군 사이의 관련성을 파악하는 문항이 2년 연속으로 출제되기도 했다.2015학년도 시험의 논술형 10점 문항에서는 문항 일부에 오류가 있어 오류에 해당하는 부분을 전체 정답처리하였다. 다항식 f(x)가 Z13 위에서 기약임을 제시하고 이를 이용해 Q위에서도 기약임을 보이는 보이는 문제였는데, 제시된 다항식은 Z13 위에서 가약이었다. 이후 임용시험에서 유한체에 관한 문항은 2025학년도 시험에서 출제되기 전까지 10여년간 다뤄지지 않았다.* 선형대수학
평가 영역
평가 내용 요소
행렬
연립1차방정식, 가우스 요르단 소거법, 행렬의 기본 성질 및 법칙, 역행렬과 가역성, 행렬식, 행렬식의 계산법, 여인수전개
공간의 기저와 차원, 내적공간, 정규직교기저, 좌표 및 기저변환||
선형변환
선형 변환의 기본 성질과 행렬의 관계, 행렬과 선형변환의 고윳값 고유벡터 고유다항식 최소다항식, 행렬과 선형 변환의 대각화
4점(서술형 1문항)의 비중으로 출제된다. 벡터 공간, 선형 변환, 선형대수학의 기본정리, 고유값과 고유다항식, 대각화, 그람-슈미트 과정과 내적을 이용한 정사영 구하기 등의 내용이 주로 출제되며 난도는 평이한 편이나, 비형식적인 아이디어 또는 많은 계산을 요구하는 문제가 출제되기도 한다. 2009 개정 교육과정 이후로는 고등학교 수학의 일반선택 과목 그 어떤 것에서조차 행렬에 관한 기본적인 내용을 다루지 않기 때문에 입학 직후 이 과목을 복병이라고 여기는 학생들도 많아졌다. 그렇지만 다른 과목들에 비해 학습 부담이 덜한 것은 사실이고, 설령 문제 풀이의 중요한 아이디어가 떠오르지 않더라도 가우스-조르당 소거법 같은 계산으로 어찌저찌 해결할 수 있는 여지가 있어 손이 빠르다면 본래의 출제 의도와는 달리 적당한 노가다로 답을 구할 수 있는 경우도 적지 않다. 후에 현대대수학이나 미분기하학에서도 선형대수학의 아이디어를 빈번하게 사용하므로 학습을 잘 해두어야 한다. * 정수론
평가 영역
평가 내용 요소
수체계 및 소인수분해
수의 체계, 페아노의 공리, 정수의 대수적 성질, 약수와 배수, 최대공약수와 최소공배수, 부정방정식, 소수와 소인수분해 전반, 정수의 여러 가지 표현
이차 잉여 및 상호 법칙, 르장드르 기호 및 야코비 기호, 이차합동식, 간단한 연분수 전개, 부정방정식
4점(서술형 4점 1문항)의 비중으로 출제된다. 합동식, 원시근, 2차 잉여 등이 주로 다루어지며, 오일러 파이 함수, 중국인의 나머지 정리, 페르마의 소정리, 오일러 정리, 윌슨의 정리 등은 거의 구구단처럼 느껴질 정도로 익숙해져야 한다. 임용 시장 강사들의 교재나 모의고사에서는 메르센 소수나 페르마 소수와 관련된 내용들도 간간히 보인다. 연분수 전개에 관한 문제는 기출되지 않았다. 오늘날 수학에서 정수론과 관련된 굉장히 많은 해결되지 않은 난제들이 존재하는 것과 비교하면 다행스럽게도 해석학, 현대대수학보다는 쉬운 문제가 출제되는 편이다. 내가 응시하고자 하는 시험 연도의 소인수분해를 미리 알아두면 편리할 때가 있다. * 미분기하학
평가 영역
평가 내용 요소
벡터
벡터, 벡터함수, 방향도함수 등
곡선의 개념
정칙곡선, 호의 길이, 자연표현 등
곡률과 비틀림률
접선벡터, 곡률, 주법선벡터, 종법선벡터, 비틀림률 등
곡선론
프레네공식, 곡선의 분류, 신개선, 곡률중심 등
곡면의 개념
정칙곡면, 단순곡면, 접평면과 법선 등
기본형식
제1(제2)기본형식, 곡면의 넓이, 법곡률, 주곡률, 가우스곡률, 평균곡률 등
곡면론
측지적곡률, 측지선, 가우스- 보네의 정리 등
6점(기입형 및 서술형 각 1문항)의 비중으로 출제된다. 기입형에서 곡선론을, 서술형에서 곡면론을 주로 다룬다. 곡선의 곡률과 열률을 구하는 공식도 알아야 하지만 프레네-세레 공식도 자유자재로 쓸 수 있어야 한다. 2009학년도부터 2013학년도까지 시행된 2차 논술형 문제에서는 위상수학과 결합하여 임용시험 끝판왕 과목으로 악명 높았으며, 시험 개편 이후에도 측지곡률의 등거리 불변성을 묻는 문제꼬깔콘문제 등 고난도 문제가 기출되었다. 주곡률, 법곡률, 측지곡률, 평균곡률, 가우스곡률의 의미와 구하는 여러 방법들을 모두 숙지하고 있어야 그때그때 적당한 방법을 골라 빠르게 풀 수 있으며, 가우스-보네 정리를 사용해서 전가우스곡률이나 전측지곡률을 찾아내야 하는 유형도 연습해야 한다. 이론도 알아야 하는데 계산도 매번 정확하게 하기는 쉽지가 않아서 미분기하학에서 좌절하는 학생들도 많은 편이다. * 확률과통계
6점(기입형 및 서술형 각 1문항)의 비중으로 출제된다. 주어진 확률 분포를 활용한 확률 및 기댓값 계산, 이차원 분포의 변수 변환, 적률생성함수, 통계적 추정과 관련된 내용이 주로 다루어진다. 단지 임용시험을 위해서는 네임드 확률분포 중에서 균등분포, 이항 분포, 정규 분포 정도만 알아둬도 충분하다는 의견도 많지만, 어느날 갑자기 푸아송 분포, 카이 제곱 분포 등의 내용을 묻게 될 수도 있으므로 몇몇 분포들까지는 학습해두는 것을 권장한다. 그러다가 실제로 2024학년도 B형에 포아송 분포가 출제되었다! 그러므로 최소한의 개념 정도는 익혀두는 편이 좋을 것이다. 참고로 임용 강사들의 모의고사에서는 푸아송 분포와 지수분포 사이의 관계, 무기억성 성질까지 사용하는 경우도 있다. 2020학년도 시험에서는 이산수학과 결합한 서술형 문제가 출제되었다. * 이산수학
평가 영역
평가 내용 요소
헤아림의 기본 원리
합의 법칙, 곱의 법칙, 포함배제의 원리, 비둘기집의 원리 등
순열과 조합
여러 가지 순열, 여러 가지 조합, 이항정리, 다항정리 등
분할
자연수의 분할, 집합의 분할 등
점화관계식
여러 가지 점화관계식, 동차선형점화관계식, 특성다항식 등
생성함수
생성함수, 지수생성함수 등
알고리즘
알고리즘, 복잡도, 탐색알고리즘, 분류알고리즘 등
게임이론
영합 게임, 비영합 게임, 결정적 게임, 비결정적 게임, 게임의 값, 최적전략 등
공평한 분배
여러 가지 공평한 분배, 유산상속문제 등
그래프의 기본
여러 가지 그래프와 그 활용, 그래프의 행렬 표현 등
경로 문제
오일러그래프, 해밀턴그래프, 최단경로, 최장경로 등
평면그래프
수형도, 최소생성수형도, 배낭꾸리기 문제, 평면그래프, 오일러공식, 쌍대그래프
그래프의 색칠
꼭짓점의 색칠, 채색수, 채색다항식, 제거-축약 정리, 지도, 사색정리, 색칠 문제의 활용 등
4점(서술형 1문항)[13]의 비중으로 출제된다. 헤아림의 기본 원리, 점화식과 생성함수, 그래프 이론과 관련된 문제가 주로 다뤄진다. 평가 요소로 제시된 내용들과 기출 문제 사이에 거리가 있는 편이다. 2020학년도 시험에서는 확률과 결합하여 점화식의 생성함수를 구하고 해당 함수를 확률밀도함수로 다루는 문제가 출제되었다.
윤양동(미래고시학원): 특이하게 인강은 진행하지 않고 노량진 직강수업만 진행. 수험생들이 가장 많이 가입한 카페 이름이 '윤양동선생님을 사랑하는 사람들의 모임(줄여서 윤사사)'일 만큼 임용시험 초반부터 강의를 해온 것으로 유명. 학원의 시설은 그닥 좋지 못하지만[14] 강의력과 전문성으로는 부동의 1타 강사라는데 이견이 없다. 특히 선형대수, 미분기하, 현대대수 쪽에 강점이 있다는 것이 대다수 수험생들의 의견.
김민아(G스쿨): 모의고사 시즌에 임대성/김민아 통합 모의고사를 진행한다. 모의고사 문제를 출제할 때 출제 근거에 대해 설명해주며 답안자료가 매우 자세하여 도움이 된다. 첨삭이 까다롭기로 유명한데, 수험생 심리 상 틀려야 더 자세하게 공부하기 때문에 시험 전까지 최대한 많이 알고 가라는 의미로 그렇게 채점한다고 한다. 실제 시험에서는 첨삭 점수보다 1~2점은 높게 나올거라 언급한다. 채점기준, 첨삭사례, 보충문제, 파이널모의고사 등 자료가 많은 편이다.
갈수록 임용시험의 경쟁률이 올라가고 있으나, 저출산이 현재 정도로 극심하지는 않았던 2010년대 중반 정도까지만 해도 명문대 수학교육과 학생의 경우에는 사립학교, 학원가, 대학원으로 빠지기 쉬운 편이라 임용시험의 어려움을 크게 걱정하지는 않았다. 또한 전공을 살려서 다른 이공계열이나 상경계열 복수전공 및 대학원 진학을 통해 나름대로 괜찮은 기업 취업의 길도 열리는 편이다. 수학과 항목에서 보면 알 수 있듯이 모든 이공계 학문의 근본이 되는 수학이라는 학문의 특성상 복수전공이나 이공계열 대학원으로 진학에 있어 상대적으로 유리한 점이 많다.
이는 당연히 남들에 비해 많은 노력을 해야하는 길이지만, 수학교육과를 졸업하고 전자공학과나 기계공학과 등 공대 대학원 석사를 밟고 연구원으로 간다던가 하는 케이스도 드문드문 존재한다. 즉 전공 공부를 성실하게 했다는 전제하에, 수학이라는 강력한 무기를 가진 수학교육과 학생들은 다른 사범대생들처럼 그 좁은 티오의 임용시험에 목을 맬 필요가 없다는 말. 물론 그렇다고 임용과 취업을 병행할 수 있다는 것이 아니다. 학부 초반에 어디로 갈지 확실히 정하지 않으면 상당히 고생한다.
그러나 복수전공은 어디까지나 복수전공이기 때문에 두 전공을 한번에 공부해야 하는 어려움, 학교별로 제도에 따라 평점이 낮으면 인기 있는 전공은 복수전공을 하지 못할 위험성 등이 있다. 즉, 복수전공을 생각하고 수학교육과에 가느니 처음부터 공대에 가는게 낫다. 수학교육과 자체만 본다면 극심한 0명대 저출산으로 인해 임용고시 합격이 어려워지고 있으며 그나마 남아있는 사교육계도 사실상 수학교육과 외에도 다른 이공계 전공자들도 모두 뛰어들 수 있기 때문에 수학교육과 출신이라고 해서 크게 유리하다고 보기는 어렵다. 사교육계마저도 저출산으로 인해 빠르게 축소되고 있다.
[1] 미국 등 외국에선 아직까지도 수학교육을 과학교육의 세부분야로 취급한다. 그래서 수학교육과내에 외국에서 수학교육으로 박사학위를 받은 교수들을 보면 모두 학위가 XX대학 교육대학원 과학교육 세부전공 수학교육/수학교육 프로그램으로 되어있는 걸 볼 수 있다. 한국에서도 원래 그랬으며, 이화여대 등 초창기 수학교육과 개설대학의 역사를 보면 과학교육계열 안에 들어가 있었던 등 옛날의 잔존한 흔적을 찾아볼 수 있다. 아이러니한 건 수학과도 마찬가지여서 외국에선 대학에 따라 수학대학 등으로 아예 떨어져 나가기도 한다.[2] 그래도 저 학부들보단 여성의 비율이 높다.[3] 이러다 보니 경북대 같은 곳의 수학교육과 성적만 따졌을 땐 2014학년도 정시기준 가, 나군 전체 학생의 평균 성적이 92.4%였다. 아무튼 설치된 학교의 레벨들이 널뛰기를 해서 소위 대학 서열 안에서 서너단계 위로 뛰어올라서 경쟁하게 된다.[4] 고려대학교도 수학교육과는 인기가 암만 못해도 중간 이상은 간다. 최고점일 때가 국어교육과 바로 다음이었고, 서울대학교도 중간이상은 간다.[5] 2023년 서울 기준 7.13:1. 지역별로 차이가 있다. 보통 서울이 가장 높고 그 다음으로 부산, 광주, 대구, 울산 등 광역시가 높으며, 지방은 경쟁률이 낮다. 참고로 임용고시 경쟁률은 기본적으로 교원자격이 있어야만 볼 수 있는 관계로, 일반 공무원 경쟁률 대비 허수가 훨씬 적기 때문에 저 정도가 낮은 것이 결코 아니다.[6] 미분적분학, 실해석학(일명 고등미적분학, 약칭 고미), 벡터해석학, 복소해석학, 정수론, 선형대수학, 현대대수학(혹은 추상대수학), 위상수학, 미분기하학, 이산수학, 수리통계학[7] 2021학년도 이전 서술형 2 문항과 기입형 1~2 문항[8] 우수한 해석학 교재라고 평가되는 Walter Rudin의 저서 《Principles of Mathematical Analysis》 수준이면 충분하다. 흔히 'PMA'로 불린다.[a] 지수초월함수의 테일러 다항식을 구하고 그걸 복소함수화 한 것에 대한 선적분의 값을 구하는 문제다.[10] 문항 자체의 난도는 매우 낮았다.[a] 지수초월함수의 테일러 다항식을 구하고 그걸 복소함수화 한 것에 대한 선적분의 값을 구하는 문제다.[12] 2021학년도 이전 기입형 1문항 및 서술형 2문항 10-11점[13] 2021학년도 이전 2-4점[14] 2022년 4월 28일 부로 강의실을 이전한다. 기존 학원에서 도보로 5분 정도 거리에 있다.[15] 현 취리히 연방 공과대학교[16] the mathematics and physics teaching diploma program[17] 다만 아인슈타인은 대학 시절 교수들을 싫어했고 학교 강의에 거의 출석하지 않았다. 친구의 강의 노트로 공부하여 시험만 쳤다고 한다.